This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160313 #13 Sep 08 2022 08:45:45 %S A160313 1,30,-1022,-145980,1513452,1167697800,20486660280,-12851291221200, %T A160313 -661166264043120,177766465895877600,16769848012294217760, %U A160313 -2913576034149940939200,-441955407700422580057920,53940055420621560419971200,12660899479421405397926325120 %N A160313 Numerator of Hermite(n, 15/31). %H A160313 G. C. Greubel, <a href="/A160313/b160313.txt">Table of n, a(n) for n = 0..368</a> %F A160313 From _G. C. Greubel_, Oct 04 2018: (Start) %F A160313 a(n) = 31^n * Hermite(n, 15/31). %F A160313 a(n+2) = 30*a(n+1) - 1922*(n+1)*a(n) %F A160313 E.g.f.: exp(30*x - 961*x^2). %F A160313 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(30/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A160313 Numerators of 1, 30/31, -1022/961, -145980/29791, 1513452/923521, ... %t A160313 Table[31^n*HermiteH[n, 15/31], {n, 0, 30}] (* _G. C. Greubel_, Oct 04 2018 *) %o A160313 (PARI) a(n)=numerator(polhermite(n, 15/31)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A160313 (PARI) x='x+O('x^30); Vec(serlaplace(exp(30*x - 961*x^2))) \\ _G. C. Greubel_, Oct 04 2018 %o A160313 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(30/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 04 2018 %Y A160313 Cf. A009975 (denominators). %K A160313 sign,frac %O A160313 0,2 %A A160313 _N. J. A. Sloane_, Nov 12 2009