cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160353 Numbers of the form p*q*r, where p < q < r are odd primes such that r = +/-1 (mod p*q).

Original entry on oeis.org

435, 465, 861, 885, 903, 915, 1335, 1743, 2211, 2235, 2265, 2485, 2667, 2685, 2715, 3081, 3165, 3507, 3585, 3615, 4035, 4065, 4323, 4431, 4865, 4965, 5151, 5253, 5271, 5385, 5835, 5995, 6123, 6153, 6285, 6315, 6441, 6501, 6567, 6735, 7077, 7185, 7385
Offset: 1

Views

Author

M. F. Hasler, May 11 2009

Keywords

Comments

Kaplan (2007) has shown that this is a subsequence of A117223 (and thus of A160350; see there for the reference), i.e., the cyclotomic polynomial phi(n) has coefficients in {0,1,-1} for indices n listed here.
This is a subsequence of A160352 which drops the requirement that p > 2.
See A160350 for further details and references.

Examples

			a(1) = 435 = 3*5*29 is the smallest product of odd primes p < q < r such that r is congruent to +/- 1 modulo the product of the smaller factors, p*q.
		

Programs

  • PARI
    forstep( pqr=1,9999,2, my(f=factor(pqr)); #f~==3 & vecmax(f[,2])==1 & abs((f[3,1]+1)%(f[1,1]*f[2,1])-1)==1 & print1(pqr","))