A160353 Numbers of the form p*q*r, where p < q < r are odd primes such that r = +/-1 (mod p*q).
435, 465, 861, 885, 903, 915, 1335, 1743, 2211, 2235, 2265, 2485, 2667, 2685, 2715, 3081, 3165, 3507, 3585, 3615, 4035, 4065, 4323, 4431, 4865, 4965, 5151, 5253, 5271, 5385, 5835, 5995, 6123, 6153, 6285, 6315, 6441, 6501, 6567, 6735, 7077, 7185, 7385
Offset: 1
Keywords
Examples
a(1) = 435 = 3*5*29 is the smallest product of odd primes p < q < r such that r is congruent to +/- 1 modulo the product of the smaller factors, p*q.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
Programs
-
PARI
forstep( pqr=1,9999,2, my(f=factor(pqr)); #f~==3 & vecmax(f[,2])==1 & abs((f[3,1]+1)%(f[1,1]*f[2,1])-1)==1 & print1(pqr","))
Comments