This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160377 #27 Feb 16 2025 08:33:10 %S A160377 0,1,2,3,4,5,6,1,8,9,10,1,12,13,1,1,16,17,18,1,1,21,22,1,24,25,26,1, %T A160377 28,1,30,1,1,33,1,1,36,37,1,1,40,1,42,1,1,45,46,1,48,49,1,1,52,53,1,1, %U A160377 1,57,58,1,60,61,1,1,1,1,66,1,1,1,70,1,72,73,1,1,1,1,78,1,80,81,82,1,1,85,1,1 %N A160377 Phi-torial of n (A001783) modulo n. %C A160377 Is a(n)<> 1 iff n in A033948, n>2? [_R. J. Mathar_, May 21 2009] %C A160377 Same as A103131, except there -1 appears instead of n-1. By Gauss's generalization of Wilson's theorem, a(n)=-1 means n has a primitive root (n in A033948) and a(n)=1 means n has no primitive root (n in A033949). [_T. D. Noe_, May 21 2009] %H A160377 Amiram Eldar, <a href="/A160377/b160377.txt">Table of n, a(n) for n = 1..10000</a> %H A160377 John B. Cosgrave and Karl Dilcher, <a href="http://www.emis.de/journals/INTEGERS/papers//i39/i39.Abstract.html"> Extensions of the Gauss-Wilson Theorem</a>, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 8 (2008), Article #A39. %H A160377 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WilsonsTheorem.html">Wilson's Theorem</a>. %F A160377 a(n) = A001783(n) mod n. - _R. J. Mathar_, May 21 2009 %F A160377 For n>2, a(n)=n-1 if A060594(n)=2; otherwise a(n)=1. - _Max Alekseyev_ %F A160377 a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - _Peter Luschny_, Oct 20 2012 %e A160377 Phi-torial of 12 equals 1*5*7*11=385 which leaves a remainder of 1 when divided by 12. %e A160377 Phi-torial of 14 equals 1*3*5*9*11*13=19305 which leaves a remainder of 13 when divided by 14. %p A160377 copr := proc(n) local a,k ; a := {1} ; for k from 2 to n-1 do if gcd(k,n) = 1 then a := a union {k} ; fi; od: a ; end: %p A160377 A001783 := proc(n) local c; mul(c,c= copr(n)) ; end: %p A160377 A160377 := proc(n) A001783(n) mod n ; end: seq( A160377(n),n=1..100) ; # _R. J. Mathar_, May 21 2009 %p A160377 A160377 := proc(n) local k, r; r := 1: %p A160377 for k to n do if igcd(n,k) = 1 then r := modp(r*k, n) fi od; %p A160377 r end: seq( A160377(i), i=1..88); # _Peter Luschny_, Oct 20 2012 %t A160377 Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &]; %t A160377 Mod[Apply[Times, a], nn], {n, 1, 88}] (* _Geoffrey Critzer_, Jan 03 2015 *) %o A160377 (Sage) %o A160377 def A160377(n): %o A160377 r = 1 %o A160377 for k in (1..n): %o A160377 if gcd(n, k) == 1: r = mod(r*k, n) %o A160377 return r %o A160377 [A160377(n) for n in (1..88)] # _Peter Luschny_, Oct 20 2012 %Y A160377 Cf. A124740 (one of just four listing "product of coprimes"). %K A160377 nonn %O A160377 1,3 %A A160377 _J. M. Bergot_, May 11 2009 %E A160377 Edited and extended by _R. J. Mathar_ and _Max Alekseyev_, May 21 2009