cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160378 a(n) = n^3 - n*(n+1)/2.

This page as a plain text file.
%I A160378 #55 Oct 16 2023 23:32:46
%S A160378 0,0,5,21,54,110,195,315,476,684,945,1265,1650,2106,2639,3255,3960,
%T A160378 4760,5661,6669,7790,9030,10395,11891,13524,15300,17225,19305,21546,
%U A160378 23954,26535,29295,32240,35376,38709,42245,45990,49950,54131,58539
%N A160378 a(n) = n^3 - n*(n+1)/2.
%C A160378 n-th cube (A000578(n)) minus n-th triangular number (A000217(n)).
%C A160378 Partial sums of A045944. - _Vladimir Joseph Stephan Orlovsky_, Jun 25 2009
%C A160378 The sum of the n-1 numbers between n^2 and n*(n+1) = a(n). - _J. M. Bergot_, Apr 15 2013
%C A160378 Use the terms in A061885 to form the antidiagonals for an array. The antidiagonals begin: 0;2,3;6,7,8;12,13,14,15;20,21,22,23,24,25.  The sum of the terms in these antidiagonals = a(n)for n > 0. - _J. M. Bergot_, Jul 08 2013
%C A160378 a(n) is the sum of the n numbers strictly between n^2-n-1 and n^2. - _Charlie Marion_, Feb 21 2020
%H A160378 G. C. Greubel, <a href="/A160378/b160378.txt">Table of n, a(n) for n = 0..1000</a>
%H A160378 Milan Janjic and B. Petkovic, <a href="http://arxiv.org/abs/1301.4550">A counting function</a>, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
%H A160378 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A160378 a(n) = (2*n^3 - n^2 - n)/2. - _Vincenzo Librandi_, Dec 12 2010; edited by _Klaus Brockhaus_, Dec 12 2010
%F A160378 From _Chai Wah Wu_, Aug 03 2022: (Start)
%F A160378 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
%F A160378 G.f.: x^2*(5 + x)/(1 - x)^4. (End)
%F A160378 E.g.f.: (x^2/2)*(5 + 2*x)*exp(x). - _G. C. Greubel_, Oct 14 2023
%e A160378 a(4) = 4^3 - 4*5/2 = 64 - 10 = 54.
%t A160378 Table[n^3 - n*(n+1)/2, {n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 25 2009 *)
%o A160378 (Magma) [ n^3-n*(n+1)/2: n in [0..50] ];
%o A160378 (PARI) a(n)=n^3-n*(n+1)/2 \\ _Charles R Greathouse IV_, Oct 18 2022
%o A160378 (SageMath) [n^3 -binomial(n+1,2) for n in range(41)] # _G. C. Greubel_, Oct 14 2023
%Y A160378 Cf. A000217, A000578, A045944.
%K A160378 nonn,easy
%O A160378 0,3
%A A160378 _Gil Broussard_, May 11 2009
%E A160378 Definition clarified and offset changed from 1 to 0 by _Klaus Brockhaus_, Dec 12 2010