A160412 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).
0, 3, 12, 21, 48, 57, 84, 111, 192, 201, 228, 255, 336, 363, 444, 525, 768, 777, 804, 831, 912, 939, 1020, 1101, 1344, 1371, 1452, 1533, 1776, 1857, 2100, 2343, 3072, 3081, 3108, 3135, 3216, 3243, 3324, 3405, 3648, 3675, 3756, 3837, 4080, 4161, 4404, 4647
Offset: 0
Keywords
Examples
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below: ...77..77..77..77 ...766667..766667 ....6556....6556. ....654444444456. ...76643344334667 ...77.43222234.77 ......44211244... 00000000001244... 00000000002234.77 00000000004334667 0000000000444456. 0000000000..6556. 0000000000.766667 0000000000.77..77 0000000000....... 0000000000....... 0000000000.......
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 31.
- Omar E. Pol, Illustration of initial terms [From _Omar E. Pol_, Nov 10 2009]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata - _Omar E. Pol_, Nov 10 2009
Crossrefs
Programs
-
Mathematica
a[n_] := 3*Sum[3^DigitCount[k, 2, 1], {k, 0, n - 1}]; Array[a, 48, 0] (* Michael De Vlieger, Nov 01 2022 *)
Formula
From Omar E. Pol, Nov 10 2009: (Start)
a(n) = A160410(n)*3/4.
a(0) = 0, a(n) = A130665(n-1)*3, for n>0.
(End)
Extensions
More terms from Omar E. Pol, Nov 10 2009
Edited by Omar E. Pol, Nov 11 2009
More terms from Nathaniel Johnston, Nov 06 2010
More terms from Colin Barker, Apr 19 2015
Comments