A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).
0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
Offset: 0
Examples
From _Omar E. Pol_, Sep 24 2015: (Start) With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins: 1; 9; 21, 49; 61, 97, 133, 225; 237, 273, 309, 417, 453, 561, 669, 961; ... Right border gives A060867. This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc. . Illustration of initial terms, for n = 1..10: . _ _ _ _ _ _ _ _ . | _ _ | | _ _ | . | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | | . | |_| _ _ _ _ _ _ _ _ |_| | . |_ _| | _|_ _|_ | | _|_ _|_ | |_ _| . | |_| _ _ |_| |_| _ _ |_| | . | | | _|_|_ _ _|_|_ | | | . | _| |_| _ _ _ _ |_| |_ | . | | |_ _| | _|_|_ | |_ _| | | . | |_ _| | |_| _ |_| | |_ _| | . | _ _ | _| |_| |_ | _ _ | . | | _|_| | |_ _ _| | |_|_ | | . | |_| _| |_ _| |_ _| |_ |_| | . | | | |_ _ _ _ _ _ _| | | | . | _| |_ _| |_ _| |_ _| |_ | . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _ . | _| |_ _| |_ _| |_ _| |_ _| |_ | . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | . | |_ _| | | |_ _| | . |_ _ _ _| |_ _ _ _| . After 10 generations there are 273 ON cells, so a(10) = 273. (End)
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Omar E. Pol, Illustration of initial terms
- Omar E. Pol, Illustration of the structure after 24th stage (contains 1729 ON cells)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Maple
read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc: A048883 := proc(n) 3^wt(n) ; end proc: A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc: A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
-
Mathematica
A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
-
PARI
my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<
Altug Alkan, Sep 25 2015
Formula
a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013
Extensions
Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010
Comments