cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160438 Number of partitions of n*(n+1)/2 with at most four parts that can be obtained from grouping (with parentheses) a permutation of the sum 1+2+...+n.

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 93, 215, 437, 815, 1436, 2413, 3886, 6041, 9125, 13436, 19323, 27221, 37670, 51293, 68797, 91025, 118982, 153797, 196721, 249206, 312935, 389761, 481709, 591080, 720485, 872763, 1050980, 1258565, 1499351, 1777462
Offset: 0

Views

Author

Hagen von Eitzen, May 13 2009

Keywords

Comments

a(n) is the number of integer quadruples (x,y,z,w) with x >= y >= z >= w >= 0 and x+y+z+w = n*(n+1)/2 such that the set {1,2,...,n} can be partitioned into four (possibly empty) subsets with respective element sums x, y, z, w.

Examples

			For n = 3 the a(3) = 5 solutions are 6 = (1+2+3), 5+1 = (2+3)+(1), 4+2 = (1+3)+(2), 3+3 = (3)+(1+2), 3+2+1 = (3)+(2)+(1). Note that 3+3 = (1+2)+(3) is the same as (3)+(1+2) as both are 3+3.
For n = 6 the partition 10+4+4+3 is *not* among the a(6) = 93 solutions because 4 can only come from grouping either (4) or (1+3), hence both groupings would have to occur; but (1+3) conflicts with both possible groupings (3) and (1+2) which could produce 3.
		

Formula

If n >= 8 then a(n) = A001400(n*(n+1)/2) - 2*A011848(n+1) - 5.