A160572 Elements of A160444, pairs of consecutive entries swapped.
1, 0, 1, 1, 4, 2, 10, 6, 28, 16, 76, 44, 208, 120, 568, 328, 1552, 896, 4240, 2448, 11584, 6688, 31648, 18272, 86464, 49920, 236224, 136384, 645376, 372608, 1763200, 1017984, 4817152, 2781184, 13160704, 7598336, 35955712, 20759040, 98232832
Offset: 1
Examples
k=2: 1,0,1,1,3,2,7,5,17,12,41,29,99,70,239,169,577,408,1393,985 k=3: 1,0,1,1,4,2,10,6,28,16,76,44,208,120,568,328,1552... (here) k=4: 1,0,1,1,5,2,13,7,41,20,121,61,365,182,1093,547,3281,.. k=5: 1,0,1,1,6,2,16,8,56,24,176,80,576,256,1856,832,6016,2688,.. k=6: 1,0,1,1,7,2,19,9,73,28,241,101,847,342,2899,1189,.. k=7: 1,0,1,1,8,2,22,10,92,32,316,124,1184,440,4264,1624,.. k=8: 1,0,1,1,9,2,25,11,113,36,401,149,1593,550,5993,2143,.. k=9: 1,0,1,1,10,2,28,12,136,40,496,176,2080,672,8128,2752,.. k=10: 1,0,1,1,11,2,31,13,161,44,601,205,2651,806,10711,3457,..
Links
- W. Limbrunner, Das Quadrat, ein Wunder der Geometrie (in German)
- Index entries for linear recurrences with constant coefficients, signature (0, 2, 0, 2).
Formula
G.f.: -x*(1-x^2+x^3)/(-1+2*x^2+(k-1)*x^4). a(n)=2*a(n-2)+(k-1)*a(n-4) at k=3. - R. J. Mathar, May 22 2009
a(1)=1, a(2)=0, and for n>=1: a(2*n+1) = a(2*n-1)+3*a(2*n), a(2*n+2) = a(2*n+1)+a(2*n). Or: Let c1 = 1+sqrt(3), c2 = 1-sqrt(3). Then a(2*n+1) = (c1^n + c2^n)/2, a(2*n+2) = (c1^n - c2^n)/(2*sqrt(3)) for n >= 0. - Hagen von Eitzen, May 22 2009
Extensions
Edited by R. J. Mathar, May 22 2009
Comments