This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160449 #24 Jan 28 2025 01:53:20 %S A160449 1,1,1,1,2,1,1,3,4,1,1,5,11,8,1,1,7,43,49,16,1,1,11,161,681,251,32,1, %T A160449 1,15,901,14721,14491,1393,64,1,1,22,5579,524137,1730861,336465,8051, %U A160449 128,1,1,30,43206,25471105,373486525,207388305,7997683,47449,256,1 %N A160449 Array read by antidiagonals: T(n,k) is the number of isomorphism classes of n-fold coverings of a connected graph with Betti number k (1 <= n, 0 <= k). %C A160449 T(n,k) is the number of orbits of the conjugacy action of Sym(n) on Sym(n)^k [Kwak and Lee, 2001]. - _Álvar Ibeas_, Mar 25 2015 %H A160449 Álvar Ibeas, <a href="/A160449/b160449.txt">Table of n, a(n) for n = 0..1829</a> %H A160449 Michael W. Hero and Jeb F. Willenbring, <a href="https://doi.org/10.1016/j.disc.2009.06.021">Stable Hilbert series as related to the measurement of quantum entanglement</a>, Discrete Mathematics, 309 (2009), 6508-6514. See Table 3. %H A160449 J. H. Kwak and J. Lee, <a href="http://dx.doi.org/10.4153/CJM-1990-039-3">Isomorphism classes of graph bundles</a>. Can. J. Math., 42(4), 1990, pp. 747-761. %H A160449 J. H. Kwak and J. Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See Table 2. %e A160449 The array begins: %e A160449 k=0 k=1 k=2 k=3 k=4 k=5 %e A160449 n=1 1 1 1 1 1 1 %e A160449 n=2 1 2 4 8 16 32 %e A160449 n=3 1 3 11 49 251 1393 %e A160449 n=4 1 5 43 681 14491 336465 %e A160449 n=5 1 7 161 14721 1730861 207388305 %o A160449 (Sage) %o A160449 def A160449(n, k): %o A160449 return sum(p.aut()**(k - 1) for p in Partitions(n)) %o A160449 # _Álvar Ibeas_, Mar 25 2015 %Y A160449 Rows: A000012, A000079, A074528, A160450, A160454, A176709. %Y A160449 Columns: A000041, A110143, A152612, A160446, A160447, A160448. %Y A160449 Cf. A057004. %K A160449 nonn,tabl %O A160449 0,5 %A A160449 _N. J. A. Sloane_, Nov 13 2009 %E A160449 Name clarified and more terms added by _Álvar Ibeas_, Mar 25 2015