This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160450 #39 Apr 27 2025 08:03:12 %S A160450 1,5,43,681,14491,336465,7997683,191374041,4588603531,110092229025, %T A160450 2641942301923,63404456863401,1521689741669371,36520416189619185, %U A160450 876488888356983763,21035724521756752761,504857318142580028011,12116575072428716250945,290797797234516859979203,6979147097598917713826121 %N A160450 Expansion of (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)). %C A160450 Number of isomorphism classes of 4-fold coverings of a connected graph with Betti number n. [Kwak and Lee] %C A160450 Number of orbits of the conjugacy action of Sym(4) on Sym(4)^n [Kwak and Lee, 2001]. - _Álvar Ibeas_, Mar 24 2015 %D A160450 J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. %H A160450 Álvar Ibeas, <a href="/A160450/b160450.txt">Table of n, a(n) for n = 0..500</a> %H A160450 M. W. Hero and J. F. Willenbring, <a href="http://dx.doi.org/10.1016/j.disc.2009.06.021">Stable Hilbert series as related to the measurement of quantum entanglement</a>, Discrete Math., 309 (2010), 6508-6514. %H A160450 J. H. Kwak and J. Lee, <a href="http://cms.math.ca/cjm/v42/cjm1990v42.0747-0761.pdf">Isomorphism classes of graph bundles</a>. Can. J. Math., 42(4), 1990, pp. 747-761. %H A160450 A. Prasad, <a href="http://arxiv.org/abs/1407.5284">Equivalence classes of nodes in trees and rational generating functions</a>, arXiv preprint arXiv:1407.5284 [math.CO], 2014. %H A160450 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (39,-428,1728,-2304). %F A160450 G.f.: (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)). %F A160450 a(n) = 3^(n-1) + 2*4^(n-1) + 8^(n-1) + 24^(n-1). - _Álvar Ibeas_, Mar 24 2015 %t A160450 Table[3^(n - 1) + 2*4^(n - 1) + 8^(n - 1) + 24^(n - 1), {n, 0, 19}] (* _Michael De Vlieger_, Mar 24 2015 *) %t A160450 LinearRecurrence[{39,-428,1728,-2304},{1,5,43,681},20] (* _Harvey P. Dale_, Feb 06 2017 *) %o A160450 (PARI) Vec((1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)) + O(x^30)) \\ _Michel Marcus_, Jan 14 2016 %Y A160450 Fourth row of A160449. %K A160450 nonn,easy %O A160450 0,2 %A A160450 _N. J. A. Sloane_, Nov 15 2009 %E A160450 Entry revised by _N. J. A. Sloane_, Sep 15 2014