This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160454 #26 Apr 08 2016 12:06:42 %S A160454 1,7,161,14721,1730861,207388305,24883501301,2985987361161, %T A160454 358318118583341,42998170050574305,5159780357316368741, %U A160454 619173642303122852601,74300837069552376921821,8916100448264989434407505,1069932053790827570370392981 %N A160454 Number of isomorphism classes of 5-fold coverings of a connected graph with Betti number n. %C A160454 Number of orbits of the conjugacy action of Sym(5) on Sym(5)^n [Kwak and Lee, 2001]. - _Álvar Ibeas_, Mar 24 2015 %D A160454 J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. %H A160454 Álvar Ibeas, <a href="/A160454/b160454.txt">Table of n, a(n) for n = 0..450</a> %H A160454 M. W. Hero and J. F. Willenbring, <a href="http://dx.doi.org/10.1016/j.disc.2009.06.021">Stable Hilbert series as related to the measurement of quantum entanglement</a>, Discrete Math., 309 (2010), 6508-6514. %H A160454 J. H. Kwak and J. Lee, <a href="http://cms.math.ca/cjm/v42/cjm1990v42.0747-0761.pdf">Isomorphism classes of graph bundles</a>. Can. J. Math., 42(4), 1990, pp. 747-761. %H A160454 A. Prasad, <a href="http://arxiv.org/abs/1407.5284">Equivalence classes of nodes in trees and rational generating functions</a>, arXiv preprint arXiv:1407.5284 [math.CO], 2014. %H A160454 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (155,-4670,59440,-374304,1152000,-1382400). %F A160454 a(n+1) = 4^n + 5^n + 2 * 6^n + 8^n + 12^n + 120^n. - _Álvar Ibeas_, Mar 24 2015 %F A160454 G.f.: -(249792*x^5-159200*x^4+36984*x^3-3746*x^2+148*x-1) / ((4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)*(12*x-1)*(120*x-1)). - _Colin Barker_, Mar 24 2015 %t A160454 LinearRecurrence[{155,-4670,59440,-374304,1152000,-1382400},{1,7,161,14721,1730861,207388305},20] (* _Harvey P. Dale_, Apr 08 2016 *) %o A160454 (PARI) Vec(-(249792*x^5-159200*x^4+36984*x^3-3746*x^2+148*x-1) / ((4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)*(12*x-1)*(120*x-1)) + O(x^100)) \\ _Colin Barker_, Mar 24 2015 %Y A160454 Fifth row of A160449. %K A160454 nonn,easy %O A160454 0,2 %A A160454 _N. J. A. Sloane_, Nov 15 2009 %E A160454 Name clarified and more terms added by _Álvar Ibeas_, Mar 24 2015