This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160462 #16 Aug 11 2025 06:59:08 %S A160462 1,3,9,22,51,106,215,411,766,1377,2423,4154,7001,11567,18834,30195, %T A160462 47809,74735,115585,176847,268064,402598,599695,886116,1299808, %U A160462 1893115,2739248,3938491,5629407,8000431,11309295,15904003,22256183,30998479,42981170,59337604 %N A160462 Coefficients in the expansion of C^2/B^3, in Watson's notation of page 106. %H A160462 Seiichi Manyama, <a href="/A160462/b160462.txt">Table of n, a(n) for n = 0..1000</a> %H A160462 Watson, G. N., <a href="https://gdz.sub.uni-goettingen.de/id/PPN243919689_0179">Ramanujans Vermutung ueber Zerfaellungsanzahlen.</a> J. Reine Angew. Math. (Crelle), 179 (1938), 97-128. %F A160462 See Maple code in A160458 for formula. %F A160462 a(n) ~ sqrt(13/15) * exp(Pi*sqrt(26*n/15)) / (20*n). - _Vaclav Kotesovec_, Nov 28 2016 %e A160462 x^7+3*x^31+9*x^55+22*x^79+51*x^103+106*x^127+215*x^151+... %t A160462 nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^2/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 28 2016 *) %Y A160462 Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), this sequence (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30). %K A160462 nonn %O A160462 0,2 %A A160462 _N. J. A. Sloane_, Nov 13 2009