cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160463 Coefficients in the expansion of C^3/B^4, in Watson's notation of page 106.

This page as a plain text file.
%I A160463 #16 Aug 11 2025 06:59:56
%S A160463 1,4,14,40,105,249,562,1198,2460,4865,9352,17486,31973,57220,100550,
%T A160463 173665,295413,495339,819900,1340655,2167825,3468579,5495908,8628080,
%U A160463 13428945,20730689,31757174,48293585,72933885,109421095,163135433,241763735,356246552
%N A160463 Coefficients in the expansion of C^3/B^4, in Watson's notation of page 106.
%H A160463 Seiichi Manyama, <a href="/A160463/b160463.txt">Table of n, a(n) for n = 0..1000</a>
%H A160463 Watson, G. N., <a href="https://gdz.sub.uni-goettingen.de/id/PPN243919689_0179">Ramanujans Vermutung ueber Zerfaellungsanzahlen.</a> J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
%F A160463 See Maple code in A160458 for formula.
%F A160463 a(n) ~ sqrt(17/3) * exp(Pi*sqrt(34*n/15)) / (100*n). - _Vaclav Kotesovec_, Nov 28 2016
%e A160463 x^11+4*x^35+14*x^59+40*x^83+105*x^107+249*x^131+562*x^155+...
%t A160463 nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^3/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 28 2016 *)
%Y A160463 Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), this sequence (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).
%K A160463 nonn
%O A160463 0,2
%A A160463 _N. J. A. Sloane_, Nov 13 2009