cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160468 Triangle of polynomial coefficients related to the o.g.f.s of the RES1 polynomials.

This page as a plain text file.
%I A160468 #16 Apr 22 2020 22:29:58
%S A160468 1,1,2,1,17,26,2,62,192,60,1,1382,7192,5097,502,2,21844,171511,217186,
%T A160468 55196,2036,2,929569,10262046,20376780,9893440,1089330,16356,4,
%U A160468 6404582,94582204,271154544,215114420,48673180,2567568,16376,1
%N A160468 Triangle of polynomial coefficients related to the o.g.f.s of the RES1 polynomials.
%C A160468 In A160464 we defined the ES1 matrix by ES1[2*m-1,n=1] and in A094665 it was shown that the n-th term of the coefficients of matrix row ES1[1-2*m,n] for m >= 1 can be generated with the RES1(1-2*m,n) polynomials.
%C A160468 We define the o.g.f.s. of these polynomials by GFRES1(z,1-2*m) = sum(RES1(1-2*m,n)*z^(n-1), n=1..infinity) for m >= 1. The general expression of the o.g.f.s. is GFRES1(z,1-2*m) = (-1)*RE(z,1-2*m)/(2*p(m-1)*(z-1)^(m)). The p(m-1), m >= 1, sequence is Gould's sequence A001316.
%C A160468 The coefficients of the RE(z,1-2*m) polynomials lead to the triangle given above.
%C A160468 The E(z,n) = numer(sum((-1)^(n+1)*k^n*z^(k-1), k=1..infinity)) polynomials with n >= 1, see the Maple algorithm, lead to the Eulerian numbers A008292.
%C A160468 Some of our results are conjectures based on numerical evidence.
%H A160468 Grzegorz Rzadkowski, M Urlinska, <a href="http://arxiv.org/abs/1612.06635">A Generalization of the Eulerian Numbers</a>, arXiv preprint arXiv:1612.06635, 2016
%e A160468 The first few rows are:
%e A160468 [1]
%e A160468 [1]
%e A160468 [2, 1]
%e A160468 [17, 26, 2]
%e A160468 [62, 192, 60, 1]
%e A160468 The first few polynomials RE(z,m) are:
%e A160468 RE(z,-1) = 1
%e A160468 RE(z,-3) = 1
%e A160468 RE(z,-5) = 2+z
%e A160468 RE(z,-7) = 17+26*z+2*z^2
%e A160468 The first few GFRES1(z,m) are:
%e A160468 GFRES1(z,-1) = -(1/1)*(1)/(2*(z-1)^1)
%e A160468 GFRES1(z,-3) = -(1/2)*(1)/(2*(z-1)^2)
%e A160468 GFRES1(z,-5) = -(1/2)*(2+z)/(2*(z-1)^3)
%e A160468 GFRES1(z,-7) = -(1/4)*(17+26*z+2*z^2)/(2*(z-1)^4)
%p A160468 nmax := 8; mmax := nmax: T(0, x) := 1: for i from 1 to nmax do dgr := degree(T(i-1, x), x): for na from 0 to dgr do c(na) := coeff(T(i-1, x), x, na) od: T(i-1, x+1) := 0: for nb from 0 to dgr do T(i-1, x+1) := T(i-1, x+1) + c(nb)*(x+1)^nb od: for nc from 0 to dgr do ECGP(i-1, nc+1) := coeff(T(i-1, x), x, nc) od: T(i, x) := expand((2*x+1)*(x+1)*T(i-1, x+1) - 2*x^2*T(i-1, x)) od: dgr := degree (T(nmax, x), x): kmax := nmax: for k from 1 to kmax do p := k: for m from 1 to k do E(m, k) := sum((-1)^(m-q)*(q^k)*binomial(k+1, m-q), q=1..m) od: fx(p) := (-1)^(p+1) * (sum(E(r, k)*z^(k-r), r=1..k))/(z-1)^(p+1): GF(-(2*p+1)) := sort(simplify(((-1)^p* 1/2^(p+1)) * sum(ECGP(k-1, k-s)*fx(k-s), s=0..k-1)), ascending): NUMGF(-(2*p+1)) := -numer(GF(-(2*p+1))): for n from 1 to mmax+1 do A(k+1, n) := coeff(NUMGF(-(2*p+1)), z, n-1) od: od: for m from 2 to mmax do A(1, m) := 0 od: A(1, 1) := 1: FT(1) := 1: for n from 1 to nmax do for m from 1 to n do FT((n)*(n-1)/2+m+1) := A(n+1, m) end do end do: a := n-> FT(n): seq(a(n), n = 1..(nmax+1)*(nmax)/2+1);
%t A160468 T[ n_, k_] := Coefficient[a[2 n]/2^IntegerExponent[(2 n)!, 2], x, n + k];
%t A160468 a[0] = a[1] = 1; a[ m_] := a[m] = With[{n = m - 1}, x Sum[ a[k] a[n - k] Binomial[n, k], {k, 0, n}]]; Join[{1}, Flatten@Table[T[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* _Michael Somos_, Apr 22 2020 *)
%Y A160468 Cf. A160464, A094665 and A083061.
%Y A160468 For the Eulerian numbers E(n, k) see A008292.
%Y A160468 The p(n) sequence equals Gould's sequence A001316.
%Y A160468 The first right hand column of the triangle equals A048896.
%Y A160468 The first left hand column equals A160469.
%Y A160468 The row sums equal the absolute values of A117972.
%K A160468 easy,nonn,tabf
%O A160468 1,3
%A A160468 _Johannes W. Meijer_, May 24 2009
%E A160468 Edited by _Johannes W. Meijer_, Sep 23 2012