cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160475 First left hand column of the Zeta triangle A160474.

Original entry on oeis.org

-1, 51, -10594, 356487, -101141295, 48350824787, -2405967772180, 5296878246375849, -24680641353374049205, 12431632076904547636178, -34807634670487142385955264, 5037797143580320963623681605
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

A160474 is the Zeta triangle.

Programs

  • Maple
    nmax:=13; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n):= 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))); p(n+1) := c(n) end do: y(1) := Zc(1): for n from 1 to nmax-2 do y(n+1) := Zc(n+1)-((2*n+2)/(2*n+3))*y(n) end do: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1) end do: seq(ZETA(n, 1), n=2..nmax);
    # edited, Johannes W. Meijer, Sep 20 2012