cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160478 The p(n) sequence that is associated with the Zeta triangle A160474.

This page as a plain text file.
%I A160478 #9 Jun 02 2025 01:40:48
%S A160478 9,450,99225,3572100,1080560250,547844046750,28761812454375,
%T A160478 66497310394515000,324074642207668852500,170139187159026147562500,
%U A160478 495019965039186576333093750,74252994755877986449964062500
%N A160478 The p(n) sequence that is associated with the Zeta triangle A160474.
%F A160478 a(n) = 3*2^(3-2*n)*(2*n-1)!*A160476(n), for n = 2, 3, .. , with A160476 the first right hand column of the Zeta triangle.
%p A160478 nmax:=15: with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: seq(p(n), n=2..nmax);
%p A160478 #  (program edited, _Johannes W. Meijer_, Sep 20 2012)
%Y A160478 Cf. A160474 and A160476.
%K A160478 easy,nonn
%O A160478 2,1
%A A160478 _Johannes W. Meijer_, May 24 2009