cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160479 The ZL(n) sequence of the Zeta and Lambda triangles A160474 and A160487.

This page as a plain text file.
%I A160479 #18 Apr 15 2021 22:55:45
%S A160479 10,21,2,11,13,1,34,57,5,23,1,1,29,31,2,1,37,1,41,301,1,47,1,1,53,3,1,
%T A160479 59,61,1,2,67,1,71,73,1,1,79,1,83,1,1,89,1,1,1,97,1,505,103,1,107,109,
%U A160479 11,113,1,1,1,1,1,1,127,2,131
%N A160479 The ZL(n) sequence of the Zeta and Lambda triangles A160474 and A160487.
%C A160479 The rather strange ZL(n) sequence rules both the Zeta and Lambda triangles.
%C A160479 The Zeta triangle led to the first and the Lambda triangle to the second Maple algorithm.
%C A160479 The first ZL(n) formula is a conjecture. This formula links the ZL(n) to the prime numbers A000040; see A217983, A128060, A130290 and the third Maple program.
%F A160479 ZL(n) = (2*n-1) * (A217983(n-1)/A128060(n)) for n >= 3.
%F A160479 ZL(n) = ZETA(n, m)/(ZETA(n-1, m-1) - (n-1)^2 * ZETA(n-1, m)), see A160474.
%F A160479 ZL(n) = LAMBDA(n, m)/(LAMBDA(n-1, m-1) - (2*n-3)^2 * LAMBDA(n-1, m)), see A160487.
%F A160479 ZL(n) = A160476(n)/A160476(n-1).
%p A160479 nmax := 65; for n from 0 to nmax do cfn1(n, 0):=1: cfn1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do cfn1(n, k) := cfn1(n-1, k-1)*n^2 + cfn1(n-1, k) end do: end do: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 3 to nmax+1 do ZL(n):=cm(n-1)/cm(n-2) end do: seq(ZL(n), n=3..nmax+1);
%p A160479 # End program 1 (program edited by _Johannes W. Meijer_, Oct 25 2012)
%p A160479 nmax1 := nmax; for n from 0 to nmax1 do cfn2(n, 0) :=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!) end do: for n from 1 to nmax1 do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax1-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax1 do cm(n) := c(n)/(6*(2*n)!) end do: for n from 3 to nmax1+1 do ZL(n) := cm(n-1)/cm(n-2) end do: seq(ZL(n), n=3..nmax1+1);
%p A160479 # End program 2 (program edited by _Johannes W. Meijer_, Sep 20 2012)
%p A160479 nmax2 := nmax: A000040 := proc(n): ithprime(n) end: A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: A128060 := proc(n) local n1: n1:=2*n-1: if type(n1, prime) then A128060(n) := 1 else A128060(n) := n1 fi: end: for n from 1 to nmax2 do A217983(n) := 1 od: for n from 1 to nmax2 do for n1 from 1 to floor(log[A000040(n)](nmax2)) do A217983(A130290(n) * A000040(n)^n1) := A000040(n) od: od: ZL := proc(n): (2*n-1)*(A217983(n-1)/A128060(n)) end: seq(ZL(n), n=3..nmax2+1);
%p A160479 # End program 3 (program added by _Johannes W. Meijer_, Oct 25 2012)
%Y A160479 Cf. A160474 and A160487.
%Y A160479 The cnf1(n, k) are the central factorial numbers A008955.
%Y A160479 The cnf2(n, k) are the central factorial numbers A008956.
%K A160479 easy,nonn,uned
%O A160479 3,1
%A A160479 _Johannes W. Meijer_, May 24 2009
%E A160479 Comments, formulas and third Maple program added by _Johannes W. Meijer_, Oct 25 2012