cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160490 The p(n) sequence that is associated with the Lambda triangle A160487.

This page as a plain text file.
%I A160490 #7 Jun 02 2025 01:41:29
%S A160490 12,1440,907200,101606400,100590336000,172613016576000,
%T A160490 31415569016832000,256351043177349120000,4471274895099323351040000,
%U A160490 8495422300688714366976000000,90272357367118278863486976000000
%N A160490 The p(n) sequence that is associated with the Lambda triangle A160487.
%p A160490 nmax:=11; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n) / factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: seq(p(n), n=2..nmax+1);
%Y A160490 A160487 is the Lambda triangle.
%Y A160490 Equals 6*(2*n-2)!*A160476(n).
%K A160490 easy,nonn
%O A160490 2,1
%A A160490 _Johannes W. Meijer_, May 24 2009, Sep 18 2012