A160502 Decimal expansion of the (finite) value of Sum_{ k >= 1, k has only a single zero digit in base 2 } 1/k.
1, 4, 6, 2, 5, 9, 0, 7, 3, 5, 0, 4, 4, 3, 6, 4, 6, 9, 9, 5, 4, 6, 1, 4, 5, 4, 4, 6, 7, 2, 0, 5, 3, 4, 6, 2, 1, 0, 7, 4, 7, 4, 4, 8, 6, 4, 7, 4, 8, 8, 2, 1, 1, 0, 9, 3, 6, 4, 2, 0, 0, 6, 2, 4, 3, 5, 4, 5, 2, 2, 9, 4, 3, 7, 8, 5, 8, 8, 1, 5, 0, 3, 5, 5, 2, 1, 9, 2, 9, 2, 2, 1, 5, 9, 2, 4, 0, 8, 9, 2, 3, 6, 9, 7, 5
Offset: 1
Examples
1.4625907350443646995461454467205346210747448647488211093642006243545229...
Links
- Robert Baillie, Summing The Curious Series Of Kempner And Irwin, arXiv:0806.4410 [math.CA], 2008-2015.
Programs
-
Mathematica
RealDigits[ N[ Sum[1/(2^n - 1 - 2^k), {n, 2, 400}, {k, 0, n - 2}], 111]][[1]] (* first install irwinSums.m, see reference, then *) First@ RealDigits@ iSum[0, 1, 111, 2] (* Robert G. Wilson v, Aug 03 2010 *)
Formula
Equals Sum_{n>=2} Sum_{k=0..n-2}, 1/(2^n - 1 - 2^k).
Comments