A160521 Coefficients in the expansion of C^7/B^8, in Watson's notation of page 106.
1, 8, 44, 192, 726, 2457, 7648, 22220, 60993, 159478, 399906, 966600, 2261630, 5139897, 11378988, 24598683, 52033372, 107890610, 219630050, 439535138, 865784403, 1680352500, 3216454360, 6077280123, 11343018559, 20928404349, 38194869384, 68989715838
Offset: 0
Keywords
Examples
x^27+8*x^51+44*x^75+192*x^99+726*x^123+2457*x^147+7648*x^171+...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Watson, G. N., Ramanujans Vermutung ueber Zerfaellungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^7/(1 - x^k)^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
Formula
See Maple code in A160458 for formula.
a(n) ~ sqrt(11) * exp(Pi*sqrt(22*n/5)) / (2500*n). - Vaclav Kotesovec, Nov 28 2016