cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160538 a(n) = 4*(n^4-n^3).

This page as a plain text file.
%I A160538 #13 Oct 21 2022 21:27:11
%S A160538 0,32,216,768,2000,4320,8232,14336,23328,36000,53240,76032,105456,
%T A160538 142688,189000,245760,314432,396576,493848,608000,740880,894432,
%U A160538 1070696,1271808,1500000,1757600,2047032,2370816,2731568,3132000
%N A160538 a(n) = 4*(n^4-n^3).
%C A160538 a(n) is the number of edges in a four-dimensional hypercube (a tesseract) having sides of length n.
%H A160538 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A160538 O.g.f.: (32*x^2+56*x^3+8*x^4)/(1-x)^5.
%F A160538 E.g.f.: 4*exp(x)*x^2 (4 + 5 x + x^2).
%F A160538 From _Amiram Eldar_, Jan 14 2021: (Start)
%F A160538 Sum_{n>=2} 1/a(n) = 3/4 - Pi^2/24 - zeta(3)/4.
%F A160538 Sum_{n>=2} (-1)^n/a(n) = -3/4 + Pi^2/48 + log(2)/2 + 3*zeta(3)/16. (End)
%e A160538 a(1) = 32 because the four dimensional unit hypercube has 32 edges.
%t A160538 Table[4 (n^4 - n^3), {n, 20}]
%t A160538 LinearRecurrence[{5,-10,10,-5,1},{0,32,216,768,2000},30] (* _Harvey P. Dale_, Nov 05 2017 *)
%o A160538 (PARI) a(n)=4*(n^4-n^3) \\ _Charles R Greathouse IV_, Oct 21 2022
%Y A160538 Cf. A046092, A059986.
%K A160538 nonn,easy
%O A160538 1,2
%A A160538 _Geoffrey Critzer_, May 18 2009
%E A160538 More terms from _Harvey P. Dale_, Nov 05 2017
%E A160538 Offset corrected by _Amiram Eldar_, Jan 14 2021