This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160551 #15 Oct 08 2022 22:13:50 %S A160551 1,242,1463,4464,10045,19006,32147,50268,74169,104650,142511,188552, %T A160551 243573,308374,383755,470516,569457,681378,807079,947360,1103021, %U A160551 1274862,1463683,1670284,1895465,2140026,2404767,2690488,2997989,3328070,3681531,4059172,4461793 %N A160551 Number of unordered ways of making change for n dollars using coins of denominations 1, 5, 10, and 25. %C A160551 a(n) is the number of distinct quadruplets (p, k, d, q) of nonnegative integers satisfying p + 5k + 10d + 25q = 100n. %H A160551 Andrew Howroyd, <a href="/A160551/b160551.txt">Table of n, a(n) for n = 0..1000</a> %H A160551 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A160551 a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)). %F A160551 a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3. %F A160551 From _Alois P. Heinz_, Oct 08 2022: (Start) %F A160551 a(n) = A001299(100*n). %F A160551 G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End) %e A160551 There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime. %p A160551 f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f,x,100*n+1),polynom)-convert(series(f,x,100*n),polynom)) /x^(100*n); %p A160551 a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3; %o A160551 (PARI) a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ _Andrew Howroyd_, Feb 02 2020 %Y A160551 Cf. A001299. %K A160551 nonn,easy %O A160551 0,2 %A A160551 _Lee A. Newberg_, May 18 2009, Jun 15 2009 %E A160551 Terms a(21) and beyond from _Andrew Howroyd_, Feb 02 2020