This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160573 #29 Oct 05 2024 04:32:54 %S A160573 2,3,3,3,5,6,4,3,5,6,6,8,11,10,5,3,5,6,6,8,11,10,7,8,11,12,14,19,21, %T A160573 15,6,3,5,6,6,8,11,10,7,8,11,12,14,19,21,15,8,8,11,12,14,19,21,17,15, %U A160573 19,23,26,33,40,36,21,7,3,5,6,6,8,11,10,7,8,11,12,14,19,21,15,8,8 %N A160573 G.f.: Product_{k >= 0} (1 + x^(2^k-1) + x^(2^k)). %C A160573 Sequence mentioned in the Applegate-Pol-Sloane article; see Section 9, "explicit formulas." - _Omar E. Pol_, Sep 20 2011 %D A160573 D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191 %H A160573 David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.], which is also available at <a href="http://arxiv.org/abs/1004.3036">arXiv:1004.3036v2</a> %H A160573 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %F A160573 a(n) = Sum_{i >= 0} binomial(A000120(n+i),i). %F A160573 For k >= 1, a(2^k-2) = k+1 and a(2^k-1) = 3; otherwise if n = 2^i + j, 0 <= j <= 2^i-3, a(n) = a(j) + a(j+1). %F A160573 a(n) = 2*A151552(n) + A151552(n-1). %e A160573 a(5) = binomial(2,0) + binomial(2,1) + binomial(3,2) + binomial(1,3) + binomial(2,4) + binomial(2,5) + ... = 1 + 2 + 3 + 0 + 0 + 0 + ... = 6 %e A160573 From _Omar E. Pol_, Jun 09 2009: (Start) %e A160573 Triangle begins: %e A160573 2; %e A160573 3;3; %e A160573 3,5,6,4; %e A160573 3,5,6,6,8,11,10,5; %e A160573 3,5,6,6,8,11,10,7,8,11,12,14,19,21,15,6; %e A160573 3,5,6,6,8,11,10,7,8,11,12,14,19,21,15,8,8,11,12,14,19,21,17,15,19,23,26,... %e A160573 (End) %p A160573 See A118977 for Maple code. %t A160573 max = 80; Product[1 + x^(2^k - 1) + x^(2^k), {k, 0, Ceiling[Log[2, max]]}] + O[x]^max // CoefficientList[#, x]& (* _Jean-François Alcover_, Nov 10 2016 *) %Y A160573 For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694. %Y A160573 Row sums of A151683. See A151687 for another version. %Y A160573 Cf. A151552 (g.f. has one factor fewer). %Y A160573 Limiting form of rows of A118977 when that sequence is written as a triangle and the initial 1 is omitted. - _N. J. A. Sloane_, Jun 01 2009 %Y A160573 Cf. A139250, A139251. - _Omar E. Pol_, Sep 20 2011 %K A160573 nonn %O A160573 0,1 %A A160573 _Hagen von Eitzen_, May 20 2009