cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160642 Minimal number k such that n! can be written as product of k (>= 2) consecutive integers.

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 2

Views

Author

Hagen von Eitzen, May 21 2009

Keywords

Comments

Sequence starts at n=2 because 1! cannot be written as product of 2 (or more) consecutive integers.
For suitable m >= n, we have n! = m!/(m-a(n))!
For n >= 3, we have a(n) <= n-1 because n! = 2*...*n.
For n = m! - 1, we have a(n) <= m!-m because n! = (m+1)*(m+2)*...*(m!-1)*m! = (n+1)!/m!.
For n>=8, it appears that the preceding two inequalities completely describe a(n), i.e. a(n) = m!-m if n=m!-1 and a(n)=n-1 otherwise.

Examples

			a(2) = 2 because 2! = 1*2. a(3) = 2 because 3! = 2*3. a(4) = 3 because 4! = 2*3*4. a(5) = 3 because 5! = 4*5*6. a(6) = 3 because 6! = 8*9*10. a(7) = 4 because 7! = 7*8*9*10.
		

Programs

  • PARI
    csfac(N, k) = local(d, w=floor(N^(1/k))); while((d=prod(i=1,k,w+i))>N,w=w-1);if(d==N,1,0)
    csmin(N) = local(k=2); while(csfac(N,k)==0,k=k+1);k
    \p 200; for(n=2,200, print(csmin(n!)))