A160657 a(n) is the period of a 2 X 4n rectangular oscillator in the 2 X 2 (B36/S125) Life-like cellular automaton.
2, 6, 14, 14, 62, 126, 30, 30, 1022, 126, 4094, 2046, 1022, 32766, 62, 62, 8190, 174762, 8190, 2046, 254, 8190, 16777214, 4194302, 510, 134217726, 2097150, 1022, 1073741822, 2147483646, 126, 126, 17179869182, 8388606, 68719476734, 1022, 2097150, 2147483646
Offset: 1
Keywords
Examples
a(2) = 6 because a 2 X 8 box has period 6 in this rule.
Links
- Adam P. Goucher, Table of n, a(n) for n = 1..160
- Nathaniel Johnston, Rectangular Oscillators in the 2*2 (B36/S125) Cellular Automaton, 2009.
- Nathaniel Johnston, The B36/S125 "2×2" Life-Like Cellular Automaton, arXiv:1203.1644 [nlin.CG], 2012; also in Game of Life Cellular Automata, A. Adamatzky (ed.), Springer-UK, 2010, pages 99-114.
- LifeWiki, 2x2
Programs
-
Mathematica
g = Function[{sq, p}, Module[{l = Length[sq]}, Do[If[sq[[i]] == sq[[j]], Return[p^(j - 1) - p^(i - 1)]], {j, 2, l}, {i, 1, j - 1}]]]; MPM = Algebra`MatrixPowerMod; EventualPeriod = Function[{m, v, p}, Module[{n = Length[m], w, sq, k, primes}, sq = NestList[(MPM[#, p, p]) &, m, n]; w = Mod[Last[sq].v, p]; sq = Map[(Mod[#.w, p]) &, sq]; k = g[sq, p]; If[k == Null, k = p^n Apply[LCM, Table[p^r - 1, {r, 1, n}]]]; primes = Map[First, FactorInteger[k]]; primes = Select[primes, (# > 1) &]; While[Length[primes] > 0, primes = Select[primes, (Mod[k, #] == 0) &]; primes = Select[primes, (Mod[MPM[m, k/#, p].w, p] == w) &]; k = k/Fold[Times, 1, primes]; ]; k ]]; mat = Function[{n}, Table[Boole[Abs[i - j] == 1], {i, 1, n}, {j, 1, n}]]; vec = Function[{n}, Table[Boole[i == 1], {i, 1, n}]]; Table[EventualPeriod[mat[2 n], vec[2 n], 2], {n, 1, 100}] (* Adam P. Goucher, Jan 13 2019 *)
Formula
a(n) divides 2^(A003558(n) + 1) - 2 for n >= 1. [Corrected by Charlie Neder, Jan 11 2019]
Extensions
a(18) corrected by Charlie Neder, Jan 11 2019
Comments