cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160663 Number of distinct sums that one can obtain by adding two squares among the n first ones.

This page as a plain text file.
%I A160663 #43 Jan 16 2023 20:59:26
%S A160663 2,5,9,14,19,26,33,41,50,60,70,82,93,105,119,134,147,164,179,197,215,
%T A160663 234,251,272,293,314,336,359,381,407,430,456,483,507,535,566,594,623,
%U A160663 652,686,714,748,780,812,849,883,918,956,992,1030,1068,1107,1141,1181
%N A160663 Number of distinct sums that one can obtain by adding two squares among the n first ones.
%C A160663 Essentially the same as A047800: a(n) = A047800(n) - 1.
%C A160663 Let A be the set of the n first squares (1,4,9,...,n^2). Let A+A be the corresponding sumset (= {a,b,a+b where (a,b) in A^2}). That very sequence describes the number of elements of A+A, relatively to n.
%C A160663 a(n-1) is the number of distinct positive distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - _Charles R Greathouse IV_, Jun 13 2013
%C A160663 An upper bound is a(n) <= A102548(2n^2) << n^2/log n. - _Charles R Greathouse IV_, Jan 16 2023
%D A160663 Melvyn B. Nathanson (1996). "Additive Number Theory: the Classical Bases" Graduate Texts in Mathematics. 164. Springer-Verlag. p. 192. ISBN 0-387-94656-X.
%H A160663 Charles R Greathouse IV, <a href="/A160663/b160663.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Alois P. Heinz)
%H A160663 L. G. Schnirelmann, <a href="https://eudml.org/doc/159613">Über additive Eigenschaften von Zahlen</a>, Math. Ann. 107 (1933) 649-690.
%H A160663 L. G. Schnirelmann, <a href="https://doi.org/10.1007/BF01448914">Über additive Eigenschaften von Zahlen</a>, Math. Ann. 107 (1933) 649-690. doi:10.1007/BF01448914.
%H A160663 Samuel S. Wagstaff, Jr., <a href="https://doi.org/10.1090/S0002-9939-1975-0379425-4">The Schnirelmann density of the sums of three squares</a>, Proc. Amer. Math. Soc. 52 (1975), 1-7.
%H A160663 Wikipedia, <a href="http://en.wikipedia.org/wiki/Additive_number_theory">Additive number theory</a>
%H A160663 Wikipedia, <a href="http://en.wikipedia.org/wiki/Schnirelmann_density">Schnirelmann density</a>
%H A160663 Wikipedia, <a href="http://en.wikipedia.org/wiki/Edmund_Landau">Edmund Landau</a>
%F A160663 a(n) = card(A+A) where A={k^2} k=1..n and A+A = {a,b,a+b where (a,b) in A^2}.
%F A160663 Trivially 2n <= a(n) <= n(n+1)/2. - _Charles R Greathouse IV_, Oct 30 2015
%F A160663 a(n) << n^2/sqrt(log n) [see A000404]. - _Charles R Greathouse IV_, Oct 30 2015
%e A160663 For n = 3, A = {1,4,9}, A+A = {1,4,9} U {2,5,10,8,13,18} thus A+A = {1,2,4,5,8,9,10,13,18}, and hence card(A+A) = 9; a(3) = 9.
%p A160663 a:= proc(n) local A, i, j; A:= [i^2$i=1..n]; nops([{A[], seq (seq (A[i]+A[j], j=1..i), i=1..nops(A))}[]]) end: seq (a(n), n=1..60); # _Alois P. Heinz_, Jun 16 2009
%t A160663 a[n_] := (Table[i^2 + j^2, {i, 0, n}, {j, i, n}] // Flatten // Union // Length) - 1; Array[a, 60] (* _Jean-François Alcover_, May 25 2018 *)
%o A160663 (Python)
%o A160663 def a(n):
%o A160663     SUM, SQR = set(), set(x**2 for x in range(1, n + 1))
%o A160663     for i in SQR:
%o A160663         SUM.add(i)
%o A160663         for j in SQR: SUM.add(i + j)
%o A160663     return len(SUM)
%o A160663 # Romain CARRE (romain.carre.2008(AT)enseirb.fr), Apr 16 2010
%o A160663 (PARI) a(n)=n++; #vecsort(vector(n^2,i,((i-1)\n)^2+((i-1)%n)^2),,8)-1 \\ _Charles R Greathouse IV_, Jun 13 2013
%o A160663 (PARI) a(n)=my(u=vector(n,i,i^2),v=List(u)); for(i=1,n, for(j=1,i, listput(v,u[i]+u[j]))); u=0; #Set(v) \\ _Charles R Greathouse IV_, Nov 18 2022
%o A160663 (PARI) first(n)=my(v=vector(n),u=[]); for(k=1,n, my(k2=k^2,w=vector(k,i,i^2+k2)); w=setunion(w,[k2]); u=setunion(u,w); v[k]=#u); v \\ _Charles R Greathouse IV_, Nov 18 2022
%K A160663 nonn
%O A160663 1,1
%A A160663 Romain CARRE (romain.carre.2008(AT)enseirb.fr), May 22 2009
%E A160663 More terms from _Alois P. Heinz_, Jun 16 2009