cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160683 Numbers n >= 1 such that A000045(n)/A000005(A000045(n)) is an integer.

This page as a plain text file.
%I A160683 #29 Nov 16 2017 15:52:24
%S A160683 1,2,3,6,24,48
%N A160683 Numbers n >= 1 such that A000045(n)/A000005(A000045(n)) is an integer.
%C A160683 No further term between 48 and 320. - _R. J. Mathar_, Apr 01 2011
%C A160683 This sequence is complete. For proof see the Luca-Young paper in links section, pages 7-10. - _Altug Alkan_, Apr 26 2016
%H A160683 Florian Luca and Paul Thomas Young, <a href="https://web.math.pmf.unizg.hr/glasnik/vol_47/no2_05.html">On the number of divisors of n! and of the Fibonacci numbers</a>, Glasnik Matematicki, Vol. 47, No. 2 (2012), 285-293. DOI: 10.3336/gm.47.2.05.
%F A160683 {n: A063375(n) | A000045(n)} . - _R. J. Mathar_, Apr 01 2011
%p A160683 with(combinat):with(numtheory): A160683 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(fibonacci(k) mod tau(fibonacci(k))=0)then return k:fi: od: end: seq(A160683(n), n=1..6); # _Nathaniel Johnston_, May 09 2011
%t A160683 Select[Range@ 120, IntegerQ[#/DivisorSigma[0, #]] &@ Fibonacci@ # &]
%o A160683 (PARI) isok(n) = my(f=fibonacci(n)); f % numdiv(f) == 0; \\ _Michel Marcus_, Jul 31 2015
%Y A160683 Cf. A000005, A000045, A063375, A160686.
%K A160683 nonn,fini,full
%O A160683 1,2
%A A160683 _Ctibor O. Zizka_, May 23 2009