This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160702 #16 Sep 22 2018 03:15:12 %S A160702 1,1,1,5,19,79,333,1441,6351,28451,129185,593373,2752427,12876343, %T A160702 60684533,287857209,1373286375,6584979659,31719337353,153416338549, %U A160702 744777567043,3627787084319 %N A160702 Sequence such that the Hankel transform of a(n+1) satisfies a generalized Somos-4 recurrence. %C A160702 The Hankel transform of a(n+1) satisfies a generalized Somos-4 Hankel determinant recurrence. %C A160702 Hankel transform of a(n+1) is A160703. In general, we can conjecture that the Hankel transform of %C A160702 h(n) of a(n+1), where a(n)=if(n=0,1,if(n=1,1,if(n=2,1,r*a(n-1)+s*sum{k=0..n-2, a(k)*a(n-1-k)}))), %C A160702 satisfies the generalized Somos-4 recurrence %C A160702 h(n)=(s^2*h(n-1)*h(n-3)+s^3*(2*s+r-2)*h(n-2)^2)/h(n-4). %C A160702 The case r=s=1 is proved in the Xin reference. %H A160702 Vincenzo Librandi, <a href="/A160702/b160702.txt">Table of n, a(n) for n = 0..300</a> %H A160702 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry5/barry223.html">On the Hurwitz Transform of Sequences</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7. %H A160702 Gouce Xin, <a href="https://doi.org/10.1016/j.aam.2008.04.003">Proof of the Somos-4 Hankel determinants conjecture</a>, Advances in Applied Mathematics, Volume 42, Issue 2, February 2009, Pages 152-156. %F A160702 a(n) = if(n=0,1,if(n=1,1,if(n=2,1,a(n-1)+2*sum{k=0..n-2, a(k)*a(n-1-k)}))) %F A160702 Recurrence: (n+1)*a(n) = 3*(2*n-1)*a(n-1) - (n-2)*a(n-2) - 8*(2*n-7)*a(n-3). - _Vaclav Kotesovec_, Nov 20 2012 %F A160702 G.f.: 1/4+(1-sqrt(16*x^3+x^2-6*x+1))/(4*x). - _Vaclav Kotesovec_, Nov 20 2012 %t A160702 CoefficientList[Series[1/4+(1-Sqrt[16*x^3+x^2-6*x+1])/(4*x),{x,0,20}],x] (* _Vaclav Kotesovec_, Nov 20 2012 *) %Y A160702 Cf.: A025262, A056010, A006720. %K A160702 easy,nonn %O A160702 0,4 %A A160702 _Paul Barry_, May 24 2009