This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160705 #10 Sep 08 2022 08:45:45 %S A160705 0,0,0,0,1,1,-1,-4,-4,5,9,9,-14,-16,-16,30,25,25,-55,-36,-36,91,49,49, %T A160705 -140,-64,-64,204,81,81,-285,-100,-100,385,121,121,-506,-144,-144,650, %U A160705 169,169,-819,-196,-196,1015,225,225,-1240,-256,-256 %N A160705 Hankel transform of A052702. %C A160705 a(n+5) is the Hankel transform of A052702(n+4). %H A160705 G. C. Greubel, <a href="/A160705/b160705.txt">Table of n, a(n) for n = 0..1000</a> %H A160705 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-4,0,0,-6,0,0,-4,0,0,-1). %F A160705 G.f.: x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ). %F A160705 a(n) = -4*a(n-3) -6*a(n-6) -4*a(n-9) -a(n-12). %t A160705 LinearRecurrence[{0,0,-4,0,0,-6,0,0,-4,0,0,-1}, {0,0,0,0,1,1,-1,-4,-4,5,9,9}, 50] (* _G. C. Greubel_, May 02 2018 *) %o A160705 (PARI) x='x+O('x^50); concat([0,0,0,0], Vec(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))) \\ _G. C. Greubel_, May 02 2018 %o A160705 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))); // _G. C. Greubel_, May 02 2018 %K A160705 easy,sign %O A160705 0,8 %A A160705 _Paul Barry_, May 24 2009