This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160741 #20 Jul 23 2019 08:28:55 %S A160741 -5,10159,867211,10373071,59271739,227860495,683245579,1727242351, %T A160741 3854919931,7823790319,14733641995,26117017999,44040338491, %U A160741 71215667791,111123125899,168143944495,247704167419,356428995631,502307776651,694869638479,945369767995 %N A160741 Numerator of P_6(2n), the Legendre polynomial of order 6 at 2n. %H A160741 G. C. Greubel, <a href="/A160741/b160741.txt">Table of n, a(n) for n = 0..1000</a> %H A160741 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A160741 From _Colin Barker_, Jul 23 2019: (Start) %F A160741 G.f.: -(5 - 10194*x - 795993*x^2 - 4516108*x^3 - 4515933*x^4 - 796098*x^5 - 10159*x^6) / (1 - x)^7. %F A160741 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6. %F A160741 a(n) = -5 + 420*n^2 - 5040*n^4 + 14784*n^6. %F A160741 (End) %p A160741 A160741 := proc(n) %p A160741 orthopoly[P](6,2*n) ; %p A160741 numer(%) ; %p A160741 end proc: # _R. J. Mathar_, Oct 24 2011 %t A160741 Table[Numerator[LegendreP[6,2n]],{n,0,40}] %o A160741 (PARI) a(n)=numerator(pollegendre(6,n+n)) \\ _Charles R Greathouse IV_, Oct 24 2011 %o A160741 (PARI) Vec(-(5 - 10194*x - 795993*x^2 - 4516108*x^3 - 4515933*x^4 - 796098*x^5 - 10159*x^6) / (1 - x)^7 + O(x^30)) \\ _Colin Barker_, Jul 23 2019 %Y A160741 Cf. A160739, A144126. %K A160741 sign,frac,easy %O A160741 0,1 %A A160741 _N. J. A. Sloane_, Nov 17 2009