cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A375261 Smallest n-digit reversible prime with only prime digits.

Original entry on oeis.org

2, 37, 337, 3257, 32233, 322573, 3222223, 32235223, 322222223, 3222222257, 32222232577, 322222232537, 3222222223333, 32222222332733, 322222222237537, 3222222222223373, 32222222222223353, 322222222222225333, 3222222222222222577, 32222222222222225573, 322222222222222233253
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 08 2024

Keywords

Comments

Differs from A177513(n) for n in A082705. - Robert Israel, May 11 2025

Crossrefs

Programs

  • Maple
    PD:= [2,3,5,7]:
    g:= proc(n) local L,d,i,x,y;
      L:= convert(n,base,4); d:= nops(L);
      x:= add(PD[L[i]+1]*10^(i-1),i=1..d);
      y:= add(PD[L[-i]+1]*10^(i-1),i=1..d);
      if isprime(x) and isprime(y) then return x fi;
    end proc:
    f:= proc(d) local k,v;
      for k from 4^(d-1) do v:= g(k); if v <> NULL then return v fi od
    end proc;
    f(1):= 2:
    map(f, [$1..30]); # Robert Israel, May 11 2025
  • Python
    from sympy import isprime
    from itertools import product
    def a(n):
        if n == 1: return 2
        for first in "37":
            for rest in product("2357", repeat=n-1):
                s = first + "".join(rest)
                if isprime(t:=int(s)) and isprime(int(s[::-1])):
                    return t
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Aug 08 2024

Formula

a(n) <= A177513(n) for n > 1.
If a(n) is not a palindrome, a(n) = A177513(n) for n > 1.
Showing 1-1 of 1 results.