cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160750 Expansion of (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.

This page as a plain text file.
%I A160750 #28 Jan 08 2025 10:30:02
%S A160750 1,16,94,331,880,1951,3811,6784,11251,17650,26476,38281,53674,73321,
%T A160750 97945,128326,165301,209764,262666,325015,397876,482371,579679,691036,
%U A160750 817735,961126,1122616,1303669,1505806,1730605,1979701,2254786,2557609
%N A160750 Expansion of (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
%C A160750 Source: the De Loera et al. article and the Haws website.
%C A160750 The coefficient of x^4 should be 1 rather than 10, and so this is an erroneous version of A294433. However, it remains in the OEIS in accordance with our policy of including published but erroneous sequences, to serve as pointers to the correct versions. - _N. J. A. Sloane_, Oct 30 2017
%H A160750 Vincenzo Librandi, <a href="/A160750/b160750.txt">Table of n, a(n) for n = 0..10000</a>
%H A160750 J. A. De Loera, D. C. Haws and M. Koppe, <a href="http://arxiv.org/abs/0710.4346">Ehrhart Polynomials of Matroid Polytopes and Polymatroids</a>, Discrete Comput. Geom., 42 (2009), 670-702.
%H A160750 D. C. Haws, <a href="http://www.math.ucdavis.edu/~haws/Matroids/">Matroids</a> [Broken link, Oct 30 2017]
%H A160750 D. C. Haws, <a href="https://www.math.ucdavis.edu/~mkoeppe/art/Matroids/">Matroids</a> [Copy on website of Matthias Koeppe]
%H A160750 D. C. Haws, <a href="/A160747/a160747.pdf">Matroids</a> [Cached copy, pdf file only]
%H A160750 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A160750 G.f.: (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
%F A160750 a(n) = 19*n^4/8 +7*n^3/4 +77*n^2/8 +5*n/4 +1. - _R. J. Mathar_, Sep 11 2011
%F A160750 E.g.f.: (1/8)*(19*x^4 + 128*x^3 + 252*x^2 + 120*x + 1)*exp(x). - _G. C. Greubel_, Apr 26 2018
%t A160750 Table[(19*n^4 +14*n^3 +77*n^2 +10*n +1)/8, {n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1, 16, 94, 331, 880}, 30] (* _G. C. Greubel_, Apr 26 2018 *)
%o A160750 (Magma) [19*n^4/8+7*n^3/4+77*n^2/8+5*n/4+1: n in [0..50]]; // _Vincenzo Librandi_, Sep 18 2011
%o A160750 (PARI) x='x+O('x^30); Vec((1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5) \\ _G. C. Greubel_, Apr 26 2018
%Y A160750 Cf. A294433.
%K A160750 nonn,easy
%O A160750 0,2
%A A160750 _N. J. A. Sloane_, Nov 18 2009