cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160764 a(n) = n-th squarefree number minus round(n*zeta(2)).

Original entry on oeis.org

-1, -1, -2, -2, -2, -3, -2, -2, -2, -2, -3, -3, -2, -2, -3, -3, -2, -1, -1, -2, -2, -2, -3, -2, -3, -4, -3, -4, -5, -3, -4, -2, -1, -1, -1, -1, -2, -2, -2, -1, -1, -2, -2, -2, -3, -3, -3, -2, -3, -3, -2, -3, -2, -3, -3, -3, -3, -2, -3, -4, -3, -1, -2, -2, -2, -3, -3, -3, -4
Offset: 1

Views

Author

Daniel Forgues, May 26 2009

Keywords

Comments

Race between the n-th squarefree number and round(n*zeta(2)).

Crossrefs

Cf. A005117 Squarefree numbers.
Cf. A013929 Nonsquarefree numbers.
Cf. A013928 Number of squarefree numbers < n.
Cf. A158819 Number of squarefree numbers <= n minus round(n/zeta(2)).

Formula

Since zeta(2) = Sum_{i>=1}, 1/(i^2) = (Pi^2)/6, we get:
a(n) = A005117(n) - n * Sum_{i>=1}, 1/(i^2) = O(sqrt(n));
a(n) = A005117(n) - n * (Pi^2)/6 = O(sqrt(n)).