This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160765 #14 Sep 08 2022 08:45:45 %S A160765 1,18,112,403,1071,2356,4558,8037,13213,20566,30636,44023,61387,83448, %T A160765 110986,144841,185913,235162,293608,362331,442471,535228,641862, %U A160765 763693,902101,1058526,1234468,1431487,1651203,1895296,2165506,2463633,2791537 %N A160765 Expansion of (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5. %C A160765 Source: the De Loera et al. article and the Haws website listed in A160747. %H A160765 G. C. Greubel, <a href="/A160765/b160765.txt">Table of n, a(n) for n = 0..1000</a> %H A160765 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A160765 G.f.: (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5. %F A160765 a(n) = (n^2+n+1)*(5*n^2+5*n+2)/2. - _R. J. Mathar_, Sep 11 2011 %F A160765 a(n) = A000566(A002061(n+1)). - _Bruno Berselli_, Jul 31 2015 %F A160765 E.g.f.: (1/2)*(5*x^4 + 40*x^3 + 77*x^2 + 34*x + 2)*exp(x). - _G. C. Greubel_, Apr 26 2018 %t A160765 Table[(n^2 + n + 1) (5 n^2 + 5 n + 2)/2, {n, 0, 40}] (* _Bruno Berselli_, Jul 31 2015 *) %o A160765 (Sage) [(n^2+n+1)*(5*n^2+5*n+2)/2 for n in (0..40)] # _Bruno Berselli_, Jul 31 2015 %o A160765 (Magma) [(n^2+n+1)*(5*n^2+5*n+2)/2: n in [0..40]] // _Bruno Berselli_, Jul 31 2015 %o A160765 (PARI) for(n=0,30, print1((n^2+n+1)*(5*n^2+5*n+2)/2, ", ")) \\ _G. C. Greubel_, Apr 26 2018 %Y A160765 Cf. A000566, A002061. %K A160765 nonn,easy %O A160765 0,2 %A A160765 _N. J. A. Sloane_, Nov 18 2009