cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160790 Vertex number of a rectangular spiral. The first differences (A160791) are the edge lengths of the spiral. The distances between two nearest edges, that are parallel to the initial edge, are the natural numbers.

This page as a plain text file.
%I A160790 #19 Jun 13 2015 00:53:12
%S A160790 0,1,2,4,7,10,16,20,30,35,50,56,77,84,112,120,156,165,210,220,275,286,
%T A160790 352,364,442,455,546,560,665,680,800,816,952,969,1122,1140,1311,1330,
%U A160790 1520,1540,1750,1771,2002,2024,2277,2300,2576,2600,2900,2925,3250,3276,3627,3654,4032,4060,4466,4495,4930,4960,5425
%N A160790 Vertex number of a rectangular spiral. The first differences (A160791) are the edge lengths of the spiral. The distances between two nearest edges, that are parallel to the initial edge, are the natural numbers.
%H A160790 Nathaniel Johnston, <a href="/A160790/b160790.txt">Table of n, a(n) for n = 0..5000</a>
%H A160790 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F A160790 a(n) = +a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
%F A160790 G.f.:  -x*(-1-x+x^2) / ( (1+x)^3*(x-1)^4 ).
%F A160790 a(n) = (2*n+3+(-1)^n)*(2*n+3-3*(-1)^n)*(2*n+15+5*(-1)^n)/384. - _Luce ETIENNE_, Mar 31 2015
%p A160790 A160791 := proc(n) if type(n,'odd') then ceil(n/2) ; else A000217(n/2) ; end if; end proc:
%p A160790 A160790 := proc(n) if n = 0 then 0; else add(A160791(i),i=0..n) ; end if; end proc:
%p A160790 seq(A160790(n),n=0..60) ;
%t A160790 Table[(2*n + 3 + (-1)^n)*(2*n + 3 - 3*(-1)^n)*(2*n + 15 + 5*(-1)^n)/ 384, {n, 0, 60}] (* _Michael De Vlieger_, Mar 31 2015 *)
%o A160790 (PARI) Vec(-x*(-1-x+x^2) / ( (1+x)^3*(x-1)^4 ) + O(x^80)) \\ _Michel Marcus_, Apr 01 2015
%Y A160790 Cf. A160791, A160792.
%K A160790 easy,nonn
%O A160790 0,3
%A A160790 _Omar E. Pol_, May 29 2009
%E A160790 Edited by _Omar E. Pol_, Feb 08 2010