cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160830 Integer part of the product of two consecutive primes divided by their sum.

This page as a plain text file.
%I A160830 #17 Sep 20 2024 20:48:20
%S A160830 1,1,2,4,5,7,8,10,12,14,16,19,20,22,24,27,29,31,34,35,37,40,42,46,49,
%T A160830 50,52,53,55,59,64,66,68,71,74,76,79,82,84,87,89,92,95,97,98,102,108,
%U A160830 112,113,115,117,119,122,126,129,132,134,136,139,140,143,149,154,155,157
%N A160830 Integer part of the product of two consecutive primes divided by their sum.
%C A160830 The differences a(n+1) - a(n) appear to grow without bound while the difference 2 appears to occur infinitely often.
%H A160830 G. C. Greubel, <a href="/A160830/b160830.txt">Table of n, a(n) for n = 1..10000</a>
%F A160830 a(n) = floor(prime(n)*prime(n+1)/(prime(n)+prime(n+1))) where prime(.) = A000040(.).
%F A160830 a(n) = floor( A006094(n)/A001043(n) ). - _R. J. Mathar_, May 29 2009.
%e A160830 a(5) = floor(prime(5)*prime(6)/(prime(5)+prime(6))) = 5.
%p A160830 a:= n-> (l-> floor(mul(i,i=l)/add(i,i=l)))([ithprime(n+i)$i=0..1]):
%p A160830 seq(a(n), n=1..65);  # _Alois P. Heinz_, Sep 20 2024
%t A160830 Table[Floor[Prime[n]*Prime[n+1]/(Prime[n] +Prime[n+1])], {n, 1, 100}] (* _G. C. Greubel_, Apr 30 2018 *)
%t A160830 Floor[Times@@#/Total[#]&/@Partition[Prime[Range[100]],2,1]] (* _Harvey P. Dale_, Sep 20 2024 *)
%o A160830 (PARI) g(x) = p1=prime(x);p2=prime(x+1);y=p1*p2/(p1+p2);floor(y);
%o A160830 g1(n) = for(j=1,n,print1(g(j)","))
%o A160830 (Magma) [Floor(NthPrime(n)*NthPrime(n+1)/(NthPrime(n)+NthPrime(n+1))): n in [1..100]]; // _G. C. Greubel_, Apr 30 2018
%Y A160830 Cf. A000040, A001043, A006094.
%K A160830 nonn
%O A160830 1,3
%A A160830 _Cino Hilliard_, May 27 2009
%E A160830 Inserted "two" in definition - _R. J. Mathar_, May 29 2009