cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160832 Expansion of eta(q)*eta(q^2)*eta(q^4), where eta(q) = Product((1-q^m), m=1..oo).

This page as a plain text file.
%I A160832 #11 May 01 2018 13:23:39
%S A160832 1,-1,-2,1,-1,3,3,-1,-1,-3,2,-3,-2,0,0,1,2,4,-3,5,3,-2,-4,0,-2,-1,1,
%T A160832 -2,2,-6,-3,-1,3,4,5,-3,2,2,3,4,-7,1,4,-1,-3,1,-4,0,-4,1,-2,1,-2,-3,1,
%U A160832 -5,0,4,1,3,5,1,4,-1,7,-5,-2,0,0,-1,-2,6,8,-5,-5,-4,-3,0,-1,0,-6,-1,-3,3,-3,6,-2,-6,6,1,-4,6,0,5,6,7,-5,-4,4,-5,2,4,6,-4,-3
%N A160832 Expansion of eta(q)*eta(q^2)*eta(q^4), where eta(q) = Product((1-q^m), m=1..oo).
%H A160832 G. C. Greubel, <a href="/A160832/b160832.txt">Table of n, a(n) for n = 0..1000</a>
%t A160832 eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-7/24)* eta[q]*eta[q^2]*eta[q^4], {q, 0, 100}], q] (* _G. C. Greubel_, Apr 30 2018 *)
%o A160832 (PARI) q='q+O('q^50); Vec(eta(q)*eta(q^2)*eta(q^4)) \\ _G. C. Greubel_, Apr 30 2018
%Y A160832 Cf. A010815, A083650, A030189, A170925.
%K A160832 sign
%O A160832 0,3
%A A160832 _N. J. A. Sloane_ and _Gary W. Adamson_, Feb 18 2010