cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160892 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 4.

Original entry on oeis.org

15, 105, 195, 420, 465, 1365, 855, 1680, 1755, 3255, 1995, 5460, 2745, 5985, 6045, 6720, 4605, 12285, 5715, 13020, 11115, 13965, 8295, 21840, 11625, 19215, 15795, 23940, 13065, 42315, 14895, 26880, 25935, 32235, 26505, 49140, 21105, 40005, 35685, 52080, 25845
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 + p + 1)*p^(2*e - 2); a[1] = 15; a[n_] := 15*Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 15 * prod(i = 1, #f~, (f[i,1]^2 + f[i,1] + 1)*f[i,1]^(2*f[i,2] - 2));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = 15*A160889(n). - R. J. Mathar, Feb 07 2011
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 5 * Product_{p prime} (1 + 1/p^2 + 1/p^3) = 5 * A330595 = 8.7446649892... .
Sum_{k>=1} 1/a(k) = (zeta(2)*zeta(3)/15) * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 0.09339604419... . (End)