This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160895 #44 Apr 01 2025 17:23:08 %S A160895 1,63,364,2016,3906,22932,19608,64512,88452,246078,177156,733824, %T A160895 402234,1235304,1421784,2064384,1508598,5572476,2613660,7874496, %U A160895 7137312,11160828,6728904,23482368,12206250,25340742,21493836,39529728,21243690,89572392 %N A160895 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7. %C A160895 a(n) is the number of lattices L in Z^6 such that the quotient group Z^6 / L is C_nm x (C_m)^5 (and also (C_nm)^5 x C_m), for every m>=1. - _Álvar Ibeas_, Oct 30 2015 %H A160895 Enrique Pérez Herrero, <a href="/A160895/b160895.txt">Table of n, a(n) for n = 1..5000</a> %H A160895 Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134. %H A160895 <a href="/index/J#nome">Index to Jordan function ratios J_k/J_1</a>. %F A160895 a(n) = J_6(n)/J_1(n)=J_6(n)/phi(n)=A069091(n)/A000010(n), where J_k is the k-th Jordan totient function. - _Enrique Pérez Herrero_, Oct 20 2010 %F A160895 Multiplicative with a(p^e) = p^(5e-5)*(1+p+p^2+p^3+p^4+p^5). - _R. J. Mathar_, Jul 10 2011 %F A160895 For squarefree n, a(n) = A000203(n^5). - _Álvar Ibeas_, Oct 30 2015 %F A160895 From _Amiram Eldar_, Nov 08 2022: (Start) %F A160895 Sum_{k=1..n} a(k) ~ c * n^6, where c = (1/6) * Product_{p prime} (1 + (p^5-1)/((p-1)*p^6)) = 0.3203646372... . %F A160895 Sum_{k>=1} 1/a(k) = zeta(5)*zeta(6) * Product_{p prime} (1 - 2/p^6 + 1/p^11) = 1.0195114923... . (End) %F A160895 a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^6). - _Ridouane Oudra_, Apr 01 2025 %p A160895 A160895 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(5*e-5)*(1+p+p^2+p^3+p^4+p^5) ; end do; a; end proc: # _R. J. Mathar_, Jul 10 2011 %t A160895 A160895[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(7-1)/EulerPhi[n]&] (* _Enrique Pérez Herrero_, Oct 20 2010 *) %t A160895 f[p_, e_] := p^(5*e - 5) * (p^6-1) / (p-1); ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* _Amiram Eldar_, Nov 08 2022 *) %o A160895 (PARI) vector(50, n, sumdiv(n^5, d, if(ispower(d, 6), moebius(sqrtnint(d, 6))*sigma(n^5/d), 0))) \\ _Altug Alkan_, Oct 30 2014 %o A160895 (PARI) a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(5*f[i,2]-5)*(1+p+p^2+p^3+p^4+p^5); f[i,2] = 1;); factorback(f);} \\ _Michel Marcus_, Nov 12 2015 %Y A160895 Column 6 of A263950. %Y A160895 Cf. A000010, A000203, A013663, A013664, A069091. %K A160895 nonn,mult %O A160895 1,2 %A A160895 _N. J. A. Sloane_, Nov 19 2009 %E A160895 Definition corrected by _Enrique Pérez Herrero_, Oct 20 2010