This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A160911 #68 May 10 2024 12:29:09 %S A160911 1,1,2,5,11,29,84,267,921,3481,14322,62306,285845,1362662,6681508, %T A160911 33483830 %N A160911 a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once. %C A160911 There is only one arrangement of 1 square tile: a 1 X 1 rectangle. There is also only 1 arrangement of 2 square tiles: a 2 X 1 rectangle. There are 2 arrangements of 3 square tiles: a 3 X 1 rectangle (three 1 X 1 tiles) and a 3 X 2 rectangle (a 2 X 2 tile and two 1 X 1 tiles). %C A160911 Short notation for the 2 possible 3-tile solutions: %C A160911 3 X 1: 1,1,1 %C A160911 3 X 2: 2,1,1 %C A160911 More examples see below. %C A160911 The smallest tile is not always a unit tile, e.g., one of the solutions for 5 tiles is: 6 X 5: 3,3,2,2,2. %C A160911 My definition of a unique solution is the "signature" string in this notation: the rectangle size for nonsquares and the list of coprime tile sizes sorted largest to smallest. Rotations and reflections of a known solution are not new solutions; rearrangements of the same size tiles within the same overall boundary are not new solutions. But reorganizations of the same size tiles in different boundaries are unique solutions, such as 4 X 1: 1,1,1,1 and 2 X 2: 1,1,1,1. %C A160911 From _Rainer Rosenthal_, Dec 23 2022: (Start) %C A160911 The above description can be abbreviated as follows: %C A160911 a(n) is the number of (2+n)-tuples (p X q: t_1,...,t_n) of positive integers, such that: %C A160911 0. p >= q. %C A160911 1. gcd(t_1,...,t_n) = 1 and t_i >= t_j for i < j and Sum_{i=1..n} t_i^2 = p * q. %C A160911 2. Any p X q matrix is the disjoint union of contiguous t_i X t_i minors, i = 1..n. (For contiguous minors resp. submatrices see comments in A350237.) %C A160911 . %C A160911 The rectangle size p X q may have gcd(p,q) > 1, as seen in the examples for 3 X 2 and 6 X 4. Therefore a(n) >= A210517(n) for all n, and a(6) > A210517(6). %C A160911 (End) %D A160911 See A002839 and A217156 for further references and links. %H A160911 Stuart E. Anderson, <a href="http://www.squaring.net/">Perfect Squared Rectangles and Squared Squares</a> %e A160911 From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start) %e A160911 . %e A160911 |A| %e A160911 |A B| |B| %e A160911 |C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1) %e A160911 |D| %e A160911 . %e A160911 |A A| %e A160911 |A A A| |A A| %e A160911 |A A A| |B B| %e A160911 |A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1) %e A160911 |B C D| |C D| %e A160911 . %e A160911 |A A A| %e A160911 |A A A| <================= 3 X 3 minor A %e A160911 |A A A| 2 X 2 minor B %e A160911 |B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C %e A160911 |B B D| 1 X 1 minor D %e A160911 ________________________________________________________ %e A160911 a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4) %e A160911 and as p X q matrices with t_i X t_i minors %e A160911 . %e A160911 Example configurations for a(6) = 29: %e A160911 . %e A160911 |A A A A| %e A160911 |A A A A| %e A160911 |A A A A| %e A160911 |A A B| |A B| |A A A A| %e A160911 |A A C| |C D| |B B C D| %e A160911 |D E F| |E F| |B B E F| %e A160911 ______________________________________________ %e A160911 (3 X 3: (3 X 2: (6 X 4: %e A160911 2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1) %e A160911 . _________________________ %e A160911 |A A A A A A B B B B B B B| | | | %e A160911 |A A A A A A B B B B B B B| | | | %e A160911 |A A A A A A B B B B B B B| | 6 | | %e A160911 |A A A A A A B B B B B B B| | | 7 | %e A160911 |A A A A A A B B B B B B B| | | | %e A160911 |A A A A A A B B B B B B B| |___________| | %e A160911 |C C C C C D B B B B B B B| | |1|_____________| %e A160911 |C C C C C E E E E F F F F| | | | | %e A160911 |C C C C C E E E E F F F F| | 5 | 4 | 4 | %e A160911 |C C C C C E E E E F F F F| | | | | %e A160911 |C C C C C E E E E F F F F| |_________|_______|_______| %e A160911 _____________________________ _____________________________ %e A160911 (13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1) %e A160911 [rotated by 90 degrees] [alternate visualization] %e A160911 .(End) %Y A160911 Cf. A002839, A005670, A113881, A210517, A217156, A219924, A221843, A221844, A221845, A340726, A342558, A350237. %K A160911 nonn,more %O A160911 1,3 %A A160911 _Kevin Johnston_, Feb 11 2016 %E A160911 a(15)-a(16) from _Kevin Johnston_, Feb 11 2016 %E A160911 Title changed from _Rainer Rosenthal_, Dec 28 2022