cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160913 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 8.

Original entry on oeis.org

255, 32385, 278715, 2072640, 4980405, 35396805, 35000535, 132648960, 203183235, 632511435, 496922835, 2265395520, 1333405965, 4445067945, 5443582665, 8489533440, 6539772585, 25804270845, 12663182955, 40480731840, 38255584755, 63109200045, 39465022215, 144985313280
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(6*e - 6) * (p^7-1) / (p-1); a[1] = 255; a[n_] := 255 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 255 * prod(i = 1, #f~, (f[i,1]^7 - 1)*f[i,1]^(6*f[i,2] - 6)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = 255*A160897(n). - R. J. Mathar, Mar 15 2016
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^7, where c = (255/7) * Product_{p prime} (1 + (p^6-1)/((p-1)*p^7)) = 70.419647503... .
Sum_{k>=1} 1/a(k) = (zeta(6)*zeta(7)/255) * Product_{p prime} (1 - 2/p^7 + 1/p^13) = 0.003956793297... . (End)