cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160957 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.

Original entry on oeis.org

1, 1023, 29524, 523776, 2441406, 30203052, 47079208, 268173312, 581120892, 2497558338, 2593742460, 15463962624, 11488207654, 48162029784, 72080070744, 137304735744, 125999618778, 594486672516, 340614792100, 1278749869056
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^10 such that the quotient group Z^10 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 10 of A263950.

Programs

  • Mathematica
    b = 11; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 20}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(9*e - 9) * (p^10-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^9, d, if(ispower(d, 10), moebius(sqrtnint(d, 10))*sigma(n^9/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^10 - 1)*f[i,1]^(9*f[i,2] - 9)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = A069095(n)/A000010(n). - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(9e-9) * (p^10-1) / (p-1).
For squarefree n, a(n) = A000203(n^9). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^10, where c = (1/10) * Product_{p prime} (1 + (p^9-1)/((p-1)*p^10)) = 0.1942316928... .
Sum_{k>=1} 1/a(k) = zeta(9)*zeta(10) * Product_{p prime} (1 - 2/p^10 + 1/p^19) = 1.0010137674... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^10). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010