cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160959 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 10.

Original entry on oeis.org

1023, 522753, 10067343, 133824768, 499511463, 5144412273, 6880289823, 34259140608, 66051837423, 255250357593, 241218048687, 1316969541888, 904033571463, 3515828099553, 4915692307383, 8770339995648, 7582212353463, 33752488923153, 18339417490383, 65344091543808
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(8*e - 8) * (p^9-1) / (p-1); a[1] = 1023; a[n_] := 1023 * Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 1023 * prod(i = 1, #f~, (f[i,1]^9 - 1)*f[i,1]^(8*f[i,2] - 8)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = 1023*A160953(n). - R. J. Mathar, Mar 16 2016
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^9, where c = (341/3) * Product_{p prime} (1 + (p^8-1)/((p-1)*p^9)) = 220.6296374... .
Sum_{k>=1} 1/a(k) = (zeta(8)*zeta(9)/1023) * Product_{p prime} (1 - 2/p^9 + 1/p^17) = 0.0009795392562... . (End)