cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160964 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 11.

Original entry on oeis.org

2047, 2094081, 60435628, 1072169472, 4997558082, 61825647444, 96371138776, 548950769664, 1189554465924, 5112501917886, 5309390815620, 31654731491328, 23516361067738, 98587674967848, 147547904812968, 281062794067968, 257921219638566, 1216914218640252
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(9*e - 9) * (p^10-1) / (p-1); a[1] = 2047; a[n_] := 2047 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 2047 * prod(i = 1, #f~, (f[i,1]^10 - 1)*f[i,1]^(9*f[i,2] - 9)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 2047 * A160957(n).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (2047/10) * Product_{p prime} (1 + (p^9-1)/((p-1)*p^10)) = 397.5922753... .
Sum_{k>=1} 1/a(k) = (zeta(9)*zeta(10)/2047) * Product_{p prime} (1 - 2/p^10 + 1/p^19) = 0.0004890150305... . (End)