cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161004 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 12.

Original entry on oeis.org

4095, 8382465, 362706435, 8583644160, 49987791945, 742460072445, 1349525501415, 8789651619840, 21417452280315, 102325010111415, 116835129114795, 760279114183680, 611574734464785, 2762478701396505, 4427568695944485, 9000603258716160, 8771463461234565
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(10*e - 10) * (p^11-1) / (p-1); a[1] = 4095; a[n_] := 4095 * Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 4095 * prod(i = 1, #f~, (f[i,1]^11 - 1)*f[i,1]^(10*f[i,2] - 10)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 4095 * A160960(n).
Sum_{k=1..n} a(k) ~ c * n^11, where c = (4095/11) * Product_{p prime} (1 + (p^10-1)/((p-1)*p^11)) = 723.3106628... .
Sum_{k>=1} 1/a(k) = (zeta(10)*zeta(11)/4095) * Product_{p prime} (1 - 2/p^11 + 1/p^21) = 0.0002443224366... . (End)