cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161006 Convolution of A000108 (Catalan numbers) with A126120 (Catalan numbers interpolated with 0's).

Original entry on oeis.org

1, 1, 3, 6, 18, 49, 155, 486, 1614, 5414, 18630, 64828, 228740, 814485, 2926323, 10588486, 38561814, 141214570, 519711666, 1921126036, 7129756188, 26555090618, 99228108222, 371886366620, 1397548389644, 5265130603468
Offset: 0

Views

Author

Philippe Deléham, Jun 02 2009

Keywords

Crossrefs

Programs

  • Maple
    C := x-> (1/2-(1/2)*sqrt(1-4*x))/x: G := C(x)*C(x^2): Gser := series(G, x = 0, 30): seq(coeff(Gser, x, n), n = 0 .. 27); # Emeric Deutsch, Jun 22 2009

Formula

G.f.: C(x)C(x^2), where C(x) = (1-sqrt(1-4x))/(2x) is the Catalan function. - Emeric Deutsch, Jun 22 2009
Conjecture: -(47*n-42)*(n+3)*(n+2)*(n+1)*a(n) + 2*(n+2)*(n+1)*(270*n^2 - 523*n + 126)*a(n-1) - 8*(n+1)*(211*n^3 - 1022*n^2 + 946*n + 63)*a(n-2) + 8*(-212*n^4 - 326*n^3 + 2489*n^2 - 1636*n + 126)*a(n-3) + 16*(985*n^4 - 8154*n^3 + 23771*n^2 - 28164*n + 11151)*a(n-4) + 32*(-386*n^4 + 5771*n^3 - 29314*n^2 + 60721*n - 43533)*a(n-5) - 64*(n-4)*(2*n-9)*(258*n^2 - 1193*n + 1267)*a(n-6) + 128*(n-5)*(2*n-9)*(2*n-11)*(82*n-203)*a(n-7) = 0. - R. J. Mathar, Oct 04 2014

Extensions

Extended by Emeric Deutsch, Jun 22 2009