This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A161011 #22 Nov 21 2019 04:10:05 %S A161011 5,4,6,3,0,2,4,8,9,8,4,3,7,9,0,5,1,3,2,5,5,1,7,9,4,6,5,7,8,0,2,8,5,3, %T A161011 8,3,2,9,7,5,5,1,7,2,0,1,7,9,7,9,1,2,4,6,1,6,4,0,9,1,3,8,5,9,3,2,9,0, %U A161011 7,5,1,0,5,1,8,0,2,5,8,1,5,7,1,5,1,8,0,6,4,8,2,7,0,6,5,6,2,1,8,5,8,9,1,0,4 %N A161011 Decimal expansion of tan(1/2). %C A161011 By the Lindemann-Weierstrass theorem, this constant is transcendental. - _Charles R Greathouse IV_, May 13 2019 %H A161011 Harry J. Smith, <a href="/A161011/b161011.txt">Table of n, a(n) for n = 0..20000</a> %H A161011 MathOverflow, <a href="https://mathoverflow.net/questions/128676/what-is-the-effect-of-adding-1-2-to-a-continued-fraction">What is the effect of adding 1/2 to a continued fraction?</a> %H A161011 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lindemann%E2%80%93Weierstrass_theorem">Lindemann-Weierstrass theorem</a> %H A161011 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A161011 From _Peter Bala_, Nov 17 2019: (Start) %F A161011 Related simple continued fraction expansions: %F A161011 tan(1/2) = [0; 1, 1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, ...]. See A019425. %F A161011 2*tan(1/2) = [1, 10, 1, 3, 1, 26, 1, 7, 1, 42, 1, 11, 1, 58, 1, 15, 1, 74, 1, 19, 1, 90, ...] %F A161011 (1/2)*tan(1/2) = [0; 3, 1, 1, 1, 18, 1, 5, 1, 34, 1, 9, 1, 50, 1, 13, 1, 66, 1, 17, 1, 82, ...]. %F A161011 tan(1/2)/(1 - tan(1/2)) = [1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, 24, ...] %F A161011 2*tan(1/2)/(1 - tan(1/2)) = [2, 2, 2, 4, 2, 6, 2, 8, 2, 10, 2, 12, ...] %F A161011 4*tan(1/2)/(1 - tan(1/2)) = [4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, ...]. (End) %e A161011 0.546302489843790513255179465780285383297551720179791246164091385932907... %t A161011 RealDigits[N[Tan[1/2],6! ]][[1]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 13 2009 *) %o A161011 (PARI) default(realprecision, 20080); x=10*tan(1/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b161011.txt", n, " ", d)); %Y A161011 Cf. A019425 (continued fraction). Cf. A049471, A161011 through A161019. %K A161011 cons,nonn %O A161011 0,1 %A A161011 _Harry J. Smith_, Jun 13 2009