cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276413 Non-repdigit numbers k that divide A045876(k).

Original entry on oeis.org

370, 407, 481, 518, 592, 629, 2727, 13008, 14634, 16260, 19512, 22764, 29268, 39024, 87804, 101010, 102564, 103896, 104895, 105820, 108262, 109890, 113960, 115830, 116883, 124740, 125356, 125874, 126984, 128205, 129870, 132275, 134680, 135135, 136752
Offset: 1

Views

Author

Altug Alkan, Sep 05 2016

Keywords

Comments

A161020 is a subsequence.

Examples

			2727 is a term because 2277 + 2727 + 2772 + 7227 + 7272 + 7722 = 29997 is divisible by 2727.
		

Crossrefs

Programs

  • Maple
    filter:= proc(x) local L, D, n, M, s, j;
      L:= convert(x, base, 10);
      D:= [seq(numboccur(j, L), j=0..9)];
      if numboccur(0,D) = 9 then return false fi;
      n:= nops(L);
      M:= n!/mul(d!, d=D);
        s:= add(j*D[j+1], j=0..9);
      evalb(((10^n-1)*M/9/n*s) mod x = 0)
    end proc:
    select(filter, [$1..2*10^5]); # Robert Israel, Sep 12 2016
  • PARI
    A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!);
    A055642(n) = #Str(n);
    A007953(n) = sumdigits(n);
    A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n));
    isA010785(n) = {1==#Set(digits(n))}
    lista(nn) = for(n=1, nn, if(A045876(n) % n == 0 && !isA010785(n), print1(n", ")));
Showing 1-1 of 1 results.