A276413 Non-repdigit numbers k that divide A045876(k).
370, 407, 481, 518, 592, 629, 2727, 13008, 14634, 16260, 19512, 22764, 29268, 39024, 87804, 101010, 102564, 103896, 104895, 105820, 108262, 109890, 113960, 115830, 116883, 124740, 125356, 125874, 126984, 128205, 129870, 132275, 134680, 135135, 136752
Offset: 1
Examples
2727 is a term because 2277 + 2727 + 2772 + 7227 + 7272 + 7722 = 29997 is divisible by 2727.
Links
- Robert Israel, Table of n, a(n) for n = 1..373
Programs
-
Maple
filter:= proc(x) local L, D, n, M, s, j; L:= convert(x, base, 10); D:= [seq(numboccur(j, L), j=0..9)]; if numboccur(0,D) = 9 then return false fi; n:= nops(L); M:= n!/mul(d!, d=D); s:= add(j*D[j+1], j=0..9); evalb(((10^n-1)*M/9/n*s) mod x = 0) end proc: select(filter, [$1..2*10^5]); # Robert Israel, Sep 12 2016
-
PARI
A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!); A055642(n) = #Str(n); A007953(n) = sumdigits(n); A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n)); isA010785(n) = {1==#Set(digits(n))} lista(nn) = for(n=1, nn, if(A045876(n) % n == 0 && !isA010785(n), print1(n", ")));
Comments