cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161025 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 15.

Original entry on oeis.org

1, 16383, 2391484, 134209536, 1525878906, 39179682372, 113037178808, 1099444518912, 3812797945332, 24998474116998, 37974983358324, 320959957991424, 328114698808274, 1851888100411464, 3649114989636504
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^14 such that the quotient group Z^14 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 14 of A263950.

Programs

  • Maple
    A161025 := proc(n)
        add(numtheory[mobius](n/d)*d^14,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161025(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161025[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(15-1)/EulerPhi[n]&]
    f[p_, e_] := p^(13*e - 13) * (p^14-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^13, d, if(ispower(d, 14), moebius(sqrtnint(d, 14))*sigma(n^13/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^14 - 1)*f[i,1]^(13*f[i,2] - 13)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_14(n)/J_1(n) where J_14 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(13e-13) * (p^14-1) / (p-1).
For squarefree n, a(n) = A000203(n^13). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^14, where c = (1/14) * Product_{p prime} (1 + (p^13-1)/((p-1)*p^14)) = 0.1388226555... .
Sum_{k>=1} 1/a(k) = zeta(13)*zeta(14) * Product_{p prime} (1 - 2/p^14 + 1/p^27) = 1.00006146517418... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^14). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010