cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161039 Number of partitions of n into odd numbers where every part appears at least 3 times.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 5, 3, 3, 6, 5, 6, 8, 6, 7, 11, 10, 9, 14, 13, 13, 19, 16, 18, 25, 22, 25, 32, 29, 31, 42, 41, 41, 53, 51, 54, 69, 64, 69, 88, 83, 89, 109, 105, 112, 136, 134, 141, 170, 166, 177, 215, 207, 219, 262, 260, 276, 320, 320, 341, 397, 397, 417, 485
Offset: 1

Views

Author

R. H. Hardin Jun 02 2009

Keywords

Examples

			a(15)=5 because we have 333, (2^6)(1^3), (2^5)(1^5), (2^4)(1^7), and (2^3)(1^9).
		

Crossrefs

Cf. A100405.

Programs

  • Maple
    g := product(1+x^(3*(2*j-1))/(1-x^(2*j-1)), j = 1 .. 20): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 1 .. 72); # Emeric Deutsch, Jun 26 2009
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(6*k-3) / (1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 02 2016 *)

Formula

G.f.: Product_{j>=1} (1 + x^(6j-3)/(1-x^(2j-1))). - Emeric Deutsch, Jun 26 2009
a(n) ~ (6*c + Pi^2)^(1/4) * exp(sqrt((6*c + Pi^2)*n/3)) / (4*3^(1/4)*sqrt(Pi) * n^(3/4)), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - Vaclav Kotesovec, Jan 05 2016

Extensions

Minor edits by Vaclav Kotesovec, Jan 02 2016